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1. INTRODUCTION

One of the most difficult and important challenges facing neuroscience is the
question of how neurons compute. The brain consists largely of interconnected
neurons that communicate via discrete action potentials - an interaction that
somehow gives rise to the variety of computations that the brain performs on a
millisecond-by-millisecond basis. [10] How this is achieved is not yet understood,
but many efforts have been made recently to construct model neural networks of
spiking neurons that can perform basic computations [2, 21, 15, 3] (for a review,
see [5]).

Such models - which I will call spiking network models - differ markedly from
previous neural network models in several respects. Firstly, there is the obvious
difference that neurons in spiking network models output discrete spikes rather
than continuous values. This contrasts with the classical connectionist approach
[14, 18] as well as with more modern rate-coding approaches. [6] The result, of
course, is more biologically plausible models of neural circuitry, since it is known
that neurons don’t communicate via firing rates. Rather, a neuron passes infor-
mation onto another via synaptic transmission of discrete action potentials.



That said, neural firing rates can still contain important information. While
neurons in a network may only communicate with each other by way of discrete
spikes, the resulting individual firing rates may encode the information represented
by the network. [6, 23] Indeed, the great variability in spiking observed in cortical
recordings suggests that this may be the case: a neuron that spikes 10 times in
one second can be encoding the same thing as a neuron that spikes at 10 different
times within that same second. [16, 11] A rate-based code would thus explain the
commonly observed trial-to-trial variability in spike times in response to the same
stimulus. [22]

Rate-coding does not come without its problems, however. Firstly, any temporal
information about the individual presynaptic events preceding an action potential
is discarded by a rate-code, which averages them out. Even if we assume such
information is irrelevant to the computation at hand, the precision of a rate code
under the stochastic regime in which neural firing seems to operate is constrained
by the number of spikes used. In other words, for high precision you need either
a large populuation of neurons or high firing rates. [5] On the mechanical side of
things, it turns out that random Poisson-like pre-synaptic spike trains generate un-
realistic regular spike trains in the post-synaptic neuron [19], which is particularly
problematic given the insight that most of neural response variability originates in
its synaptic inputs. [12]

The rate-coding solution to this latter problem is to balance the excitatory and
inhibitory inputs to a neuron. [16, 23] But we the first two problems remain,
and we end up with a less rich and more inefficient code. Spiking networks can
provide a solution to all three problems, by balancing excitation and inhibition
and ensuring the neurons only spike when they have to. [5]

Below, we examine the properties and mechanisms of such networks, with the
aim of assessing and possibly improving their biological plausibility. I begin by
deriving the architecture and dynamics of a prototypical predictive coding spiking
network, in the vein of Boerlin et al (2013). I then go on to simulate a slightly
more biologically realistic variation on the model and test the effect of several
modifications to it. Finally, I derive the structure of a rate-coding network with
similar functionality and discuss its relevance.

2. DERIVATION OF THE SPIKING NETWORK MODEL

We take the approach of Boerlin et al (2013) to constructing a network of spiking
neurons that represents a J-dimensional variable x with dynamics

dx
1 — = Ax+c(t
1) = (v
The goal is to derive the dynamics of the individual neuron membrane potentials
such that at any time ¢, the network’s representation X(¢) is an accurate estimate

of x(t). As emphasized above, we take a spike-based coding approach wherein the
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network’s representation at time ¢ is a function of all the individual neuron spike
trains at that time. Thus, we aim to derive dynamics that will produce spike trains
yielding a representation X with dynamics approximately equal to Cé—’t‘.

The derivation springs from three key assumptions. Firstly, we model the net-
work as a set of neurons with recurrent connections that take an external feed-
forward input c(¢). Thus, we view equation 1 as the dynamics of a variable with
a state transition matrix A and command variables c(t). Whereas the transition
matrix is built into the recurrent connections, the commands are injected into
the network as external inputs. This terminology highlights the relevance of the
computation carried out by this network to control theory. [2]

Secondly, we assume that the representation of the network, which I will refer
to as the network estimate X, has the following dynamics:

(2) Z—j = —\gX +Toxk(t)

where k is an arbitrary synaptic kernel (e.g. a ¢ function or a decaying exponen-
tial), A is a leak rate, o is a vector of spike trains o;(¢t) = Y, §(¢t — t¥) for each
of the : =1, ..., N neurons, and I' is a J X N matrix providing the weights of the
contributions of each of the N neurons to the network estimate of each of the J
components of x. We call each of the ¢ = 1, ..., N columns of T', henceforth notated
as I';, the decoding kernel of neuron ¢. Solving equation 2, we get that the network
estimate is a weighted and leaky sum over spike trains X = I'o % k x hy(t), where
ha(t) = ©(t)e ! is a decaying exponential kernel.

Lastly, we assume that an arbitrary neuron ¢ will spike at time ¢ if and only if
this yields a decrease in the squared network estimate error E(t):

3) B(t) = / dr(x(r) — (7))’

Noting that a spike from i changes the estimate X by adding a synaptic kernel
weighted by the decoding kernel of neuron i (X(t) — %(t) + ;o x(€)), our spiking
condition for neuron i becomes:

(4) /0 6 dr(x(1) — %(1) — Tio x k(7)) < /0 6 dr(x(7) — %(7))?

where € is some amount of time into the future over which we minimize the error.
For simple cases (e.g. when k(t) = 0(t)), a "greedy” minimization of F(t) may
be performed where € = 0. [2, 3] For others, however (e.g. the difference-of-
exponentials synapse case [15], see section 3.7 below) a small € > 0 may be required.
Carrying out the integration and doing some algebra, equation 4 gives us

(5) 7 (x(t) - %()) > w

This is the spiking condition for neuron i: when equation 5 is satisfied, neuron ¢
should spike.



The task is now to define individual neural dynamics such that this happens.
This turns out to be extremely simple: equate the left side of equation 5 to the
membrane potential of the ¢th neuron V; and the right side to ¢’s spiking threshold
T;. We now have an equation for the membrane potentials of each of the neurons
in the network that will lead to spikes in accordance to our spiking rule:

(6) V(1) =T7 (x(t) — %(t))

Put intuitively, the membrane potential of the 7th neuron is the network estimate’s
error projected onto 7’s decoding kernel.
From here, we can derive the individual neuron dynamics:

A T dx dx

(7) v (E - E)

Replacing the dynamics for x and X with equations 1 and 2, respectively:
av

(8) T T"(Ax+c) — (—\& +Toxk))

Assuming the network estimate is a good approximation of x, we can then replace
x with x:
A%

(9) % = FTC + FT<A + )\dI))A( — FTFO * KR

where I is the identity matrix. Expanding X to its components and adding a
generic leak term for biological plausibility [10]:

av
dt

We see find that our final dynamics contain four terms: (1) a leak term, (2) ex-
ternal input, (3) "slow” excitatory recurrent connections, and (4) ”fast” inhibitory
connections. We loosely call these latter two terms "slow” and "fast”, respec-
tively, because the "slow” ones are slowed down by convolution with the decaying
exponential hy. We assume that the synaptic kernel x is either a d-function (as
in [2]) or some flavour of quickly rising and decaying function (such as a decaying
exponential [15] or a difference-of-exponentials /citechalk2015) that reflects the
transient nature of post-synaptic potentials.

In the simplest case, k(t) = 0(t), and you get exactly the network derived in
Boerlin et al (2013). Here, the "fast” inhibitory autapses are particularly im-
portant because they implement the membrane potential reset after an action
potential (which is not at all biologically realistic). In the case where all neurons
have equal decoding kernels (i.e. Vi,jI'; =T), it can be shown that, in the limit

(10) = AN V+TTe+TT(A + N DToxk*hy —T'Tox*k

of high firing rates, the network estimate will have dynamics & = &+ [; Ay /2, thus
providing a good estimate of a one-dimensional signal x(t) as long as Ay is small
(remember that the parameter Ay was introduced for biological plausibility, it did
not follow from the derivation). [2]
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We note, however, that this model violates Dale’s law, as each neuron needs to
send excitation and inhibition to its post-synaptic neurons (including itself). It
turns out this problem can be circumvented by producing two separate populations
of inhibitory and excitatory neurons, and deriving the inhibitory neuron dynamics
such that they closely track the excitatory population estimate. In doing so, the
inhibitory neurons effectively implement the inhibitory signals necessary for equa-
tion 10 to hold. See Appendix A for the derivation. The full network architecture
is schematized in figure 1.
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FIGURE 1. Schematic of the network architecture we consider. ® and
W denote the matrices of positive and negative decoding kernels, respec-
tively, where ®; is the decoding kernel of the ith neuron with a positive
kernel (i.e. it is the ith column of ®) and ¥, is the decoding kernel
of the uth neuron with a negative kernel. E and I denote excitatory
and inhibitory neurons, indexed by i (for positive kernels) or u (nega-
tive) and j (positive) or v (negative), respectively. Blue open and closed
circles denote ”slow” and ”fast” inhibitory synapses and the same goes
for the red squares representing excitatory synapses. For example, the
ith excitatory neuron with a positive kernel (neuron nf’E) takes ”slow”
excitatory synaptic input from all excitatory neurons i’ with positive ker-
nels (including itself), ”fast” excitatory synaptic input from all excitatory
neurons u with negative decoding kernels, ”slow” inhibitory synaptic in-
put from inhibitory neurons with negative kernels, and ”fast” inhibitory
synaptic input from all inhibitory neurons with positive decoding kernels.
Note that many of the ”fast” connections consist of dot products between
decoding kernels, such that neurons with similar decoding kernels elicit
stronger excitation/inhibition between each other. A, A4, Z, and ¢, as
used in the text.
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2.1. Intuitive explanation of the network dynamics. What the derived dy-
namics effectively do is ensure that a neuron spikes iff its contribution to the
estimate will reduce the prediction error. Thus the membrane potential of each
neuron is equated to the projection of the prediction error onto its decoding kernel.
If the prediction error grows in the direction of its kernel, the membrane potential
will rise until the neuron eventually fires, in turn adding its kernel to the estimate
and cancelling out the error.

But what happens when two neurons have similar kernels? When the error grows
in the direction of their kernels, their potentials will simultaneously rise towards
threshold. Should both spike, however, the network will overcompensate for its
estimate’s error. This is where the "fast” inhibitory connections are crucial. When
one of these two neurons spikes, it will instantly send inhibition to all neurons
with similar kernels. In this manner, the network distributes spiking efficiently
across the network: neurons only spike when they are needed. This offers spiking
networks a particular advantage over rate networks and makes them extremely
robust to synaptic failures and/or lesions. [2, 5]

This mechanism, however, clearly relies on inhibitory signals immediately re-
sponding to spikes. When we modify the network architecture to obey Dale’s law
(Appendix A), we will see that this causes problems with how synaptic transmis-
sion is implemented. Furthermore it requires an exquisitely correlated inhibitory
and excitatory signal, which is not necessarily empirically supported. [5]

3. RESULTS

We begin by attempting to simulate the Dale’s law-obeying spiking network of
Boerlin et al (2013) derived above, with instant synapses (i.e. with synaptic kernel
k(t) = 6(t)). The dynamics of this network cannot be integrated analytically, so
we perform numerical integration via Euler’s method. Unfortunately, formulating
the algorithm for numerical integration in this case turns out to be quite non-
trivial. We begin by describing the problem and rationalize our solution, which
ends up not exactly implementing the dynamics derived above. We then explore
several modifications to our model and show that certain properties of its behaviour
persist. Note that we are considering the fully functional Dale’s law architecture, in
which neurons are either excitatory or inhibitory (E or I) and can have positive ()
or negative (-) kernels (see figure 1). The four subpopulations are thus designated
as E+4, E-, I+, and I- in the figures below.

3.1. The spike updating problem. The most straightforward way of imple-
menting the above model is by numerically integrating the equations for the dy-
namics of the individual membrane potentials and checking for suprathreshold
potentials at the start of every timestep. When a neuron’s membrane poten-
tial is above threshold, it fires a spike, evoking an instant excitatory/inhibitory
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post-synaptic potential (EPSP/IPSP) in all the neurons with ”fast” synaptic con-
nections from the spiking neuron. At every timestep, the membrane potentials of
the whole the network are updated according to the identity of the suprathreshold
spiking neurons, each time adding a spike to those neurons’ respective spike trains.
The tracking results of this algorithm are plotted in figure 2A.
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FIGURE 2. Tracking performance of algorithms 1 and 2. Here and in
all subsequent similar plots, the orange line denotes the trajectory of the
estimate being tracked and the blue line the trajectory of the network
estimate. z-axis is in milliseconds, as in all other plots below. Relative
error = 1.233x103 for A, 0.151 for B.

This implementation of the model clearly leads to great overestimation. In other
words, too many excitatory neurons are spiking too often. The culprit of this
poor performance is the discrete timesteps inherent to the numerical integration.
The issue is appreciated by considering the following scenario: suppose that two
excitatory neurons ¢ and ¢’ have membrane potentials above threshold at time ¢,
such that they both spike. Considering the continuous time interval between ¢ — 1
and t, however, it is likely that one of those neurons would have reached threshold
before the other under the exact continuous dynamics. Once one, say i, reached
threshold first, the resulting spike would instantly trigger EPSPs in inhibitory
neurons that would likely fire, thus instantly triggering IPSPs in the excitatory
neurons and bringing the membrane potential of i’ back down away from threshold,
preventing it from firing anywhere near time ¢. We can solve this problem by
approximating the identity of the spiking neuron in any given timestep by the
suprathreshold neuron with the highest membrane potential. Once we impose this
constraint on the spike updating algorithm, we get improved performance (figure.
2B).

A problem that remains is that a neuron’s membrane potential stays above
threshold until an inhibitory neuron fires and evokes an IPSP. This is clearly a
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blatant violation of how biological neurons function, where an action potential
consists of a spike followed by an immediate fall in membrane potential to below
its resting state. Indeed, this issue poses a challenge to the model itself, as it follows
directly from the mathematical derivation. We can try to fix this by implementing
an explicit voltage self-reset whenever a neuron spikes. While in the mathematical
model the reset magnitude is dependent on the identity of the subsequently spiking
inhibitory neuron, here we accordingly assume the fixed reset magnitude to be
equal to the synaptic weight from the inhibitory neuron most likely to fire following
the excitatory neuron’s spike, i.e. the one that has the strongest synaptic input
from that excitatory neuron. At the time of a spike, we subtract this amount
from the current membrane potential of the neuron.! The only remaining worry
now is that, when an inhibitory spike immediately succeeds an excitatory spike
(which almost always occurs), the membrane potential of the spiking excitatory
neuron will fall unrealistically low as it will receive a strong IPSP following its self-
reset. This is fixed by implementing a kind of reversal potential [4] by imposing
a minimum on the membrane potential, set to the spiking threshold minus the
self-reset - the minimum potential achievable in the absence of inhibitory input.
This algorithm yields the desired performance with a reasonable relative error of
117 (figure 3, top panel).

114 might seem more appropriate here to subtract from the spiking threshold, since in con-
tinuous time the membrane potential at the time of a spike will be exactly equal to the spiking
threshold, by definition. However, the membrane potential would have changed in the time
transpired between the time of the spike and the discrete timetstep we are considering, such
that, under continuous time, the membrane potential at this timestep would not be equal to
the spiking threshold minus the reset. In any case, simulations show that this does not make a
difference to network performance. In the subsequently simulated models, we thus subtract the
spike reset from the neuron’s membrane potential at that time (which will inevitably be above
threshold).



10

Network Estimate

100 200 300 400 500 600 700 800 900 1000

__ Excitatory Neurons

;3; Canea b by i T
3233358 N\ U
. SR =i £ k3 4
4 E EE
=~
19 "
o « « < ¢

100 200 300 400

FIGURE 3. Tracking performance and spike rasters from simulating the
network with algorithm #3. First panel as above. Second and third
panels show spike rasters and population average firing rate timecourses
for neurons with positive (blue) and negative (orange) decoding kernels,
in the excitatory and inhibitory populations, respectively. For each of
these plots, and all similar ones below, the left y-axis denotes neuron
index and right y-axis denotes firing rate, in Hz. Tracking error = .117

However, the resulting spike trains from implementing the model with this al-
gorithm are highly correlated and do not resemble the typical irregular patterns
observed in real neurons (figure 3, second and third panels). [10, 4] The reason
for this might be that, since spike updating occurs simultaneously for all neurons,
the large EPSPs in inhibitory neurons following an excitatory spike cannot trigger
the subsequent inhibitory spike until the next timestep. As a result, the feedback
inhibition that is supposed to silence all other excitatory neurons with similar de-
coding kernels to the one that just spiked is delayed. Importantly, neurons with
similar decoding kernels have correlated membrane potentials, so if one neuron
is at or above threshold, then any other neuron with a similar decoding kernel is
likely to be as well. Hence, when an excitatory neuron spikes, another neuron with
a similar decoding kernel is likely to also be above threshold and thus spike on the
next timestep, simultaneously with the feedback inhibition that was supposed to
silence it.
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We can fix this by simply checking for suprathreshold membrane potentials in the
inhibitory population before the excitatory population. Because the IPSPs result-
ing from the instant synapses between inhibitory and excitatory neurons are quite
strong, it is virtually impossible for an excitatory neuron to remain above threshold
following an inhibitory spike. Thus, when an inhibitory spike achieves the inhibi-
tion it is supposed by lowering the potential of the according excitatory neurons
below threshold before the algorithm ”spikes” them (i.e. checks for suprathresh-
old potentials). Furthermore, since the excitatory population is checked after the
inhibitory population, when an excitatory spike leads to suprathreshold potentials
in a the inhibitory population, the resulting inhibitory spikes are delayed until the
next timestep, thus preventing disynaptic transmission within the same timestep
(i.e. i — 7 — i). Thus, we deviate from the mathematical model by imposing cer-
tain constraints to make our model (which is now defined jointly by the dynamics
derived above and the spike updating algorithm) more biologically plausible: fixed
and automatic self-resets, reversal potentials, and no instant disynaptic transmis-
sion.

This algorithm yields the best performance (figure 4) and produces biologically
realistic Poisson-like spike trains with population average firing rates in 1-3Hz
range. These results resemble those obtained by Boerlin et al (2013), who pre-
sumably implemented the exact mathematical model via Euler numerical integra-
tion.? We now go on to examine the properties of our model and explore several
variations.

2How they did so remains a mystery...
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FIGURE 4. Performance of our model in tracking a square wave function
(see text for details). First three panels as in figure 3. Bottom panel is a
histogram of interspike intervals (ms), collapsing across all neurons. Red
line is best fitting exponential function. Tracking error = .0815

3.2. Model behaviour. Figures 4 and 5 show the performance of our model
tracking two different one-dimensional variables. In figure 4, the network is per-
forming perfect integration of a variable x with dynamics & = ¢(t) (i.e. A = 0),
where ¢(t) is a positive square wave followed by a negative one:

10 1<t< .2

ct)=4¢-20 5<t<.6
0 else
In figure 5, the network tracks a variable x with dynamics @ = —5x + ¢(t), effec-

tively performing leaky integration over the input commands ¢(t), which consist of
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a positive and a negative pulse corrupted by Gaussian white noise n ~ A (0, 10):

10+1n A<t< .2
ct)y=9¢-20+n 5<t<.6
0 else

Comparing these figures to the simulation results of Boerlin et al (2013) (particu-
larly figure S3), it is easy to see that our model behaves in a qualitatively similar
fashion. Firstly, the network’s tracking performance is excellent, with relative
error of .0815 and .0665 in the perfect and leaky integrator cases, respectively.
Secondly, spike trains are Poisson-like and irregular, with exponential-like distri-
bution of ISI’s. Lastly, firing rates are within a plausible 1-3Hz range.
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FIGURE 5. Performance of our model in tracking a decaying signal with
two Gaussian pulses injected into the system (see text for details). Plots
exactly as in figure 4. Tracking error = .0665
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As stressed above, an important characteristic of this class of spiking networks is
that there is a particularly tight balance between excitation and inhibition. [5] We
find this as well with our model. In the top panels of figures 6 and 7, we see that
the firing rates of the inhibitory and excitatory populations, while operating at
different levels (because of the differing population sizes), fluctuate in a perfectly
synchronized fashion: every time an excitatoy neuron spikes, an inhibitory neuron
spikes. Indeed a strong correlation between firing rates was found, with Pearson
r > 0.99 for both populations in each case. The histogram in the second panel,
explains this: almost every excitatory spike is followed by an inhibitory spike in
the next timestep, i.e. 0.1ms later. Another particularly salient feature of the class
of spiking networks we are considering is that subthreshold membrane potentials
are correlated between neurons with similar decoding kernels (bottom panels, blue
line), and anticorrelated between neurons with different decoding kernels (red line).

[5]
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FIGURE 6. E/I balance of the integrator network. Top panel shows pop-
ulation mean firing rates for each subpopulation, converted to z-scores
to facilitate comparison. Note that fluctuations in the firing rates of
excitatory and inhibitory neurons with corresponding decoding kernels
are correlated at a very fine timescale, Pearson r = .995,992, p < .0001
for positive kernel and negative kernel populations, respectively. Middle
panel shows histogram the number of timesteps between an excitatory
spike and the next closest inhibitory spike (from any neuron in the net-
work). Bottom panel shows the cross-correlation between the membrane
potentials of two excitatory neurons with similar kernels (blue) and with
opposite kernels (red).
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FIGURE 7. E/I balance of the leaky integrator network. Plots exactly
as in figure 6. Excitatory-inhibitory firing rates significantly correlated
for neurons with decoding kernels in the same direction, Pearson r =

.997,.994, p < .0001.

We ask whether such

3.3. Synaptic weights. One modification to the model that might loosen the
correlation between excitatory and inhibitory currents is weakening the synap-
tic weights between excitatory and inhibitory neurons. This would decrease the
strength of EPSPs in inhibitory neurons, thus requiring more more excitatory
spikes to trigger an action potential. To test this, we took the same network
simulated above and multiplied all the excitatory decoding kernels by 0.1. This
has the effect of decreasing all synaptic weights (except for the recurrent within-
population inhibitory synapses) and lowering the spiking threshold for excitatory

neurons, while leaving the inhibitory population thresholds untouched.



150

100

50

FIGURE 8. Tracking performance and E/I balance of the network with
weakened excitatory synapses, see text for details. See previous figures
for detailed description of each plot. Tracking error = .116. Excitatory-
inhibitory firing rates significantly correlated for neurons with decoding

Network Estimate

0 100 200 300 400 500 600 700 800 900 1000
[ E+ E- I+ -]
Normalized Population Mean Firing Rates
T T T T T T T T T
AL W
¢
d
.‘:‘
[
1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
\umber of Ti ps B 1
Adjacent Exc-Inh Spikes
o 1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

kernels in the same direction, » = 1.00,.999, p < .0001.

17

Our results are shown in figure 8. The network’s tracking performance remains
high, while the E/I balance is slightly altered: rather than an inhibitory spike im-
mediately following every excitatory spike, it is often the case that 1-2 ms transpire
after an excitatory spikes prior to an inhibitory spike being elicited. However, the
correlation in firing rates was in fact slightly strengthened.

Another approach is to depart further from the mathematically derived model
by injecting some noise into the synaptic strengths, thus deviating them from their
theoretically optimal values. This additionally leads to a more biologically plausi-
ble network by eliminating the perfect symmetry in synaptic connection strengths
between excitatory and inhibitory neurons and between excitatory neurons with
opposite kernels, while keeping them correlated. [20] We multiplied every synaptic
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weight by a rectified Gaussian variable with mean 1 and standard deviation 0.1.
We found, however, that performance suffers and the tight excitatory/inhibitory
(E/I) balance remains (figure 9), even though again the time between adjacent
excitatory and inhibitory spikes was spread over a much larger range.
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FIGURE 9. Tracking performance and E/I balance of the network with
noisy excitatory synapses, see text for details. Tracking error = .580.
Excitatory-inhibitory firing rates significantly correlated for neurons with
decoding kernels in the same direction, r = .998,.999, p < .0001.

3.4. Sparse connections. Another move towards biological plausibility worth
exploring is altering the connectivity of the network. Previous work has shown
that connectivity in the cortex is quite sparse, with a rate of connectivity of around
11%. [20] On the other hand, inhibitory-excitatory connectivity seems to be quite
dense, one experiment finding 70% of randomly sampled interneuron-pyramidal

cell pairs to be connected. [7]
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We tested each of these scenarios by appropriately adjusting the decoding ker-
nels. In the fully sparse network case, the kernels were adjusted so that the pro-
portion of non-zero synaptic weights between any two populations was 0.11.3 In
the dense inhibitory connectivity case, the same excitatory kernels were used and
new decoding kernels were drawn for the inhibitory neurons, enforcing them to all

3To maintain comparability between models, we used exactly the same decoding kernels as
in all previous simulations, modifying them by setting a random sample of their components to
0 to achieve the desired connection rates. All non-zero synaptic weights this case are thus the
same as their homologues in the above tested models.
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be non-zero. This resulted in connection rates of 0.11 between excitatory neurons
and 0.33 between excitatory and inhibitory neurons.

Network Estimate
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FIGURE 11. Tracking performance and E/I balance of the network with
sparse excitatory connections and dense inhibitory connections. The con-
nectivity is set to 0.11 for excitatory-excitatory connections and 0.33 for
excitatory-inhibitory connections, see text for details. Tracking error =
.106. Excitatory-inhibitory firing rates significantly correlated for neu-
rons with decoding kernels in the same direction, r = .999,.997, p < .0001.

The results for the fully sparse and partially sparse networks are shown in fig-
ures 10 and 11, respectively. Tracking performance remains high, and the tight
correlation in excitation and inhibition remains.

4Because of the interdependency of synaptic weights in our network (arising from the fact
that they are derived from the individual neuron decoding kernels), it is impossible to obtain
a connectivity rate of .11 between excitatory neurons and .7 between excitatory and inhibitory
neurons as is suggested to be the case by the above cited evidence.
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3.5. Decoder leak rates. An alternative construction we have not considered
in our derivation of the network dynamics is that the inhibitory and excitatory
estimates have different representational leak rates A4. This is of particular note
because if we assume that this leak rate is slower for inhibitory neurons than for
excitatory neurons, then the derivation results in a new set of inhibitory ”slow”
synapses between inhibitory neurons (see appendix E for the resulting equation).
These recurrent connections could thus potentially lead to inhibition of the in-
hibitory population, disrupting the E/I balance.

However, we found that only very small differences in these leak rates keep
the tracking performance within a suitable range. Figure 12 shows the results of
simulations of the model when \; = 11 for the excitatory population and Ay = 10
for the inhibitory population. Tracking performance suffers greatly and the E/I
balance remains unchanged.
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FIGURE 12. Tracking performance and E/I balance of the network with
different representational leak rates for the excitatory and inhibitory pop-
ulation, leading to a new set of inhibitory ”slow” synapses between in-
hibitory neurons. Here, )\dE = 11 and )‘zl = 10. Tracking error = 1.251.
Excitatory-inhibitory firing rates significantly correlated for neurons with
decoding kernels in the same direction, r = .999,.997, p < .0001.

3.6. Firing costs. As noted in appendix B, our final dynamical equations imple-
mented (approximately) in our model are derived from minimizing a cost function
including the error function of equation 3 as well as a sum over individual neuron
firing rates. In other words, the network minimizes a cost function composed of
prediction error plus firing rates, the latter component weighted by a linear firing
cost parameter v. In the above simulations, this parameter was set to 0 for the
inhibitory neurons. Figure 13 shows the simulation results from a model incor-
porating a firing cost for inhibitory neurons, which has the effect of raising the
spiking threshold. Naturally, it now takes on average more excitatory spikes to
make an inhibitory neuron spike, reflected by the larger spread of time elapsed
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excitatory-inhibitory spikes in our simulation (figure 13, bottom
corresponding inhibitory and excitatory population mean firing

rates remained highly correlated.
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3. Tracking performance and E/I balance of the network

incorporating a linear firing cost for inhibitory neurons, here set to
10~°. Tracking error = .076. Excitatory-inhibitory firing rates signifi-
cantly correlated for neurons with decoding kernels in the same direction,
r =.995,.996, p < .0001.

3.7. Slow synapses. Finally, we tried incorporating biophysically realistic synapses
by setting the synaptic kernel to a scaled decaying exponential, x(t) = Ze *t. This
results in "fast” synapses having an instant rise time to Z, followed by a decay

with rate A\.. By

to get the "slow”

difference-of-expo
rate Ay (A, > N\g

convolving this kernel with the decaying exponential kernel hy
syanpses, "slow” post-synaptic potentials have the form of a
nentials Z'(e=*a* — e=*?) with finite rise time 1/\, and decay
, 2" > 0). This model also included a background noise term

n ~ N(0,0.1) added to the membrane potentials.
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We found that this model performed very poorly, not being able to track the
variable at all (figure 14). This is surprising given that previous efforts to similarly
modify the unrealistic instant synapses of the original model have succeeded. |3,
15] Tt is thus worth noting here that our model stands apart from two previous
approaches in that (1) it generealizes to any dynamical system Ax (as opposed to
ref. [3], where they only track a one-dimensional signal with A=—X\;), and (2) it
obeys Dale’s law (as opposed to ref. [15], where they incorporate Hodgkin-Huxley-
type ionic currents that then need to be compensated for by recurrent connections
that complicate the translation of the network to one that obeys Dale’s law). Due
to time constraints we were not able to analyze our model to understand why it
performed so poorly. However, it suggests that might not be possible to construct
a spiking network derived as above that simultaneously includes realistic synaptic
dynamics and obeys Dale’s law. Our simulations also suggest that incorporating
such synapses only strengthens the correlations between excitatory and inhibitory
signals.
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FIGURE 14. Tracking performance and E/I balance of the network in-
corporating biophysically realistic synapses (see text for details). Track-
ing error = .99. Excitatory-inhibitory firing rates significantly correlated
for neurons with decoding kernels in the same direction, » = 1.0,.999, p <
.0001.

4. A RELATED RATE-NETWORK APPROACH

It is worth noting the relation between the model considered here and a related
rate-network designed to maintain the representation of a static variable while the
neurons interact dynamically. [6] The so-called FEVER network is constructed by
a simple rule derived from the individual neuron dynamics and the dynamics of
the variable being represented (in this case equal to 0, since it is static). I proceed
to show that the same logic can be exploited to derive a rate network that can
track an arbitrary J-dimensional signal with linear dynamics and inputs c(t), as
the spiking network we have been considering does.

Because the model in question is a rate network rather than a spiking network,
individual neuron dynamics are defined over their firing rates, rather than their
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membrane potentials:

d?“i

N J
(11) o —ApTi + ZWz‘ﬂ”j + Z Qircy,
j=1 k=1

where W;; is the weight of the ”"synaptic” connection from neuron j to neuron ¢
and € is the weight of the contribution of the kth external input signal to the
ith neuron. We then assume the network’s representation X(¢) is a linear sum over
each neuron’s decoding kernels, as above, except that the decoding kernels are now
weighted by each neuron’s firing rate:

(12) %(t) = I'r

where IT" is a J X N matrix in which the ith column corresponds to the decoding
kernel of the i¢th neuron, for tracking a J-dimensional variable (and r is a N x 1
vector with the firing rates for each neuron).

Given these two assumptions, we can derive an equation for our desired synaptic
weights W by equating the derivative of our estimate do the dynamics of the
variable x we wish to track:

dx dr
1 —=I'—=A
(13) o o X+c
Plugging in equation 11:
(14) I'(—Apr+ Wr 4+ Qc) = Ax+c

Substituting in the network estimate X for x, plugging in equation 12, and rear-
ranging, we get

(15) (TW — AT — AT)r = (I - T'Q)c

To get a solvable equation for the synaptic weights, we assume that € =
TT(TTT)~!. In other words, we assume that T' has a right pseudo-inverse and
that €2 is it. This results in the right side of equation 15 reducing to 0, such that
we can now obtain W by solving the following equation:

(16) I'W — \pI' — AT =0

Relating this to the original FEVER rule, we can express it as a constraint on the
network decoding kernels, where every neuron’s decoding kernel T'; must satisfy
the following rule:

(17) Ti=) TuAr—) W,T,
k J

where the single subscripts on matrices index columns. In other words, a given
neuron’s decoding kernel is a sum of two components: (1) a sum over the decoding
kernels of each of its post-synaptic neurons, weighted by the synaptic connections,
and (2) a sum over the coefficient vectors for each component of the J-dimensional
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dynamical system being tracked, weighted by the decoding kernel elements corre-
sponding to each of these components. In the spirit of Druckmann et al, we title
this equation the DynoFEVER rule.

We can show that solutions exist for equation 16. We start by considering the
set of eigenvectors #,,, and eigenvalues \,, of W7, and assuming that each row of
the decoding kernel matrix is a weighted sum of these eigenvectors:

(18) Li=> al)i,

assuming the convention henceforth that I'; is the transpose of the ¢th row of T’
(i.e. an N x 1 matrix). Rearranging equation 16, we have that I'W = \gI" + AT".
Solving for I';, this translates to:

J

Since by definition W''%,, = \,,7,,, equation 18 gives us

(20) WIT; =) " al)A, 0,

™m 'm
m

Plugging equations 18 and 20 into equation 19,

(21) > ali T = Ap > alTn +> Ay Y a)i,
J m

m m

Rearranging, we get

(22) S G~ Dal =37, Y Ayal)
m j

m

resulting in the following equation:

(23) (Am — Dafl) =) Ajjal)
J

Solutions to this equation, along with equation 18, yields both I' and W, providing
the necessary components to build the DynoFEVER network.

By construction, this network’s estimate will evolve over time exactly as x(t).
The case is indeed quite similar to the spiking network considered above, which
is also derived from the dynamics of x(¢). Is there a formal relationship here? At
some level there has to be, since the dynamics of their respective estimates are, by
construction, closely matched.

Relating their individual components, however, turns out to be non-trivial. In
both cases the dynamics of the tracked variable are built into the network, but
in completely different ways. The DynoFEVER rule is derived by equating the
dynamics of the network estimate to the dynamics of the tracked variable. In con-
trast, the dynamics of the spiking network estimate are defined a priori (equation
2). Rather than fitting the rate or estimate dynamics to the tracked variable, we
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constructed the spiking network by imposing an optimal spiking rule for individual
neurons and then deriving the membrane potential dynamics from this rule. Thus,
the discrepancy in construction between the two models arises at (at least) two
levels. Firstly, the dynamics of x are built into the network in completely different
ways: equation 3 vs. 13. Secondly, the resulting dynamical equations define the
behaviour of the network at separate functional levels: firing rates vs. membrane
potentials.

While rate networks are not biologically plausible in themselves, they can be
exploited to construct spiking networks that perform the same computations[1], so
the question of how these two models relate is of clear relevance to the challenge of
building functional spiking networks. It is worth noting here that the DynoFEVER
network can, in principle, be made to obey Dale’s law. [6] The question then
becomes what the E/I balance would look like in a spiking network derived from
the DynoFEVER network, and whether it might in fact be formally equivalent to
the spiking network described above. We leave this an open question for further
investigation.

5. DISCUSSION

In summary, we have constructed a spiking network crudely more biologically
plausible than that put forth by Boerlin et al (2013). We did not succeed in ap-
proaching the biophysical relevance of more biologically-oriented models derived in
the same fashion [15], but our model did obey broader neurophysiological princi-
ples (e.g. it obeyed Dale’s law, as opposed to the model in [15]). We showed that,
like the idealized mathematical model on which it is based, our model requires
a tight balance of excitation and inhibition, which is maintained across a wide
variety of parameter settings. Even altering the synaptic strengths and spiking
thresholds did not change this.

Is such tight E/I balance empirically supported? While it is well known that
excitatory and inhibitory currents to a cortical neuron tend to be balanced on
average[17, 13, 25, 9], evidence for correlation at such a fine temporal scale [24, §]
is not as strong. Furthermore, strong temporal correlations between neuron mem-
brane potentials like those observed here are not typically observed in biological
neurons, although at least one study has found such correlations in primary visual
cortex. [26]

Empirically, the picture is not at all clear. From a theoretical perspective, our
results support the hypothesis that functional spiking networks require a particu-
larly tight E/I balance [2, 5]. We modified the original balanced spiking network of
Boerlin et al in a number of ways to make it more biologically plausible and found
that under all these variations the tight correlation in excitatory and inhibitory
firing rates remained.

Finally, we stressed two theoretical questions that remain to be answered. Firstly,
the possibility of incorporating realistic synaptic into our model holds much promise
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for constructing biologically realistic functional spiking networks. Even more pow-
erful would be to find a way to get the biophysically motivated model of Schwem-
mer et al (2015) to obey Dale’s law. Secondly, the lack of empirical evidence for
the ”tight” E/I balance in these networks poses the question of whether they can
be constructed in a different manner. We have proposed we try working from the
DynoFEVER network to deriving a spiking network.

[1]
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6. APPENDICES

6.1. A. Modifying the spiking network to obey Dale’s law. One outstand-
ing detail of the network derived in section 2 is that any given neuron may have
outgoing excitatory and inhibitory connections, thus violating Dale’s law. This
can be fixed by partitioning the network into two subpopulations of excitatory
and inhibitory neurons, respectively. The excitatory neurons receive feed-forward
external input c(¢) and track x(¢) as above, with the inhibitory connections re-
placed by synapses from inhibitory neurons that track the excitatory population
estimate X and take as input spikes from the excitatory population.

We thus derive the dynamics of the inhibitory neurons as we did for the non-
Dale’s law neurons above, but now minimizing the error function with respect to
the excitatory estimate X, rather than x:

(24) (1) = / dr (R5(r) — &1(r))?

where I indexes the inhibitory population and E indexes the excitatory population.
By minimizing E'(t) over spike times, expressing the resulting spiking condition
as a membrane potential and a spiking threshold, and taking the derivative of the
equation for membrane potential (and adding a leak term), we get the following
dynamics for inhibitory neurons:

dV!

25 — =\ V4 TV TEGE & k — TV TloP 4
dt
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with spiking thresholds T} = ||T'}||?k(€)/2, where T is the matrix of decoding
kernels of the inhibitory neurons, and T'® its excitatory counterpart. Note that
inhibitory neurons only take input from excitatory neurons, and that all synapses
to and from these neurons are of the "fast” variety. Importantly, all synaptic
inputs from the excitatory population E are excitatory and all synaptic inputs
from I are inhibitory, thus obeying Dale’s law. It should be noted here that this
in fact only holds if the components of T'F and I'! are all positive or all negative.
We will return to this point below.

Having seen that the derivation of the non-Dale’s law network leads to dynamics
that ensure faithful representation of the tracked variable x(t), we can be sure that
%I(t) will be a good estimate of X(¢#). Thus we can now modify the excitatory
neuron dynamics to obey Dale’s law by replacing & = %¥(¢) in equation 6 with
%I(t), leading to

E
(26) d?; = M VELTE e TR Ax + AR ) — TR ol # ¢
Again exploiting the fact that x ~ %% and &/ ~ %
dynamics that obey Dale’s law:
dVE

(27) DT A\ VE + e + FET(A + )\dI)I‘EoE x K *hg — T ol %

E = T'PoP x k * hy, we obtain

Here, excitation is mediated by recurrent connections FET(A + A\I)TE dependent
on the dynamics of the variable being tracked, and inhibition (as well membrane
potential resets after spiking) is implemented via excitatory-inhibitory synaptic
weights equal to the dot product of the decoding kernels of the pre-synaptic and
post-synaptic neurons (see figure 1).

A few caveats to this architecture have been ignored. Firstly, if the dynamics
of the tracked variable are negative and faster than the dynamics of the network
estimate (e.g. eig(A) < —Ag) then A + \; will yield negative recurrent connec-
tion weights between excitatory neurons. This can be easily accommodated by
using the inhibitory population estimate %'(¢) instead of %F(#) in the third term
of equation 27, as in equation 26. Secondly, as was already mentioned briefly, the
excitatory/inhibitory status of each of the synapses we have constructed is contin-
gent on the decoding weights of the excitatory and inhibitory populations being all
positive or all negative, such that TE' T! > 0. This constrains the network estimate
%E(t) to being able to actively decrease or increase but not both, depending on
whether its decoding kernels are all negative or all positive, respectively. This can
be easily fixed by adding another population of excitatory and inhibitory neurons
with decoding kernels of an opposite sign. By similarly following the same deriva-
tion structure as above, the connections between these populations can be defined
such that the network as a whole can behave (in theory) exactly like the non-
Dale’s law case above (see ref. [2] supplementary materials for the full derivation).
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Figure 1 provides a schematic of this network architecture, under the assumption
that (A + A\g) > 0.

6.2. B. Incorporation of firing costs. We note that in our derivation of the
spiking network we omitted the incorporation of linear firing costs. Such costs are
necessary to obtain biologically realistic irregular spike trains. The corresponding
dynamics are obtained by adding a linear firing cost to the error function that we
minimize over:

(28) E(t) = /O dr(x(7) = %(7))* + v|r(7)|

where r is a vector of the firing rates of all neurons and |.| is the L1 norm. This
simply results in an increase of the neuron thresholds by vAg: T; = 5(||T}||%k(e) +
’U)\d).

6.3. C. Simulation parameters. Except where noted, the following parameter
values were used: Note that the decoding kernels were drawn randomly only once.

Parameter Value Parameter meaning

NE 150 neurons number of excitatory neurons
NT 50 neurons number of inhibitory neurons
P, L ~ Binom(1,0.7)Unif(.06, .1) decoding kernels of excitatory

itive kernels

and inhibitory neurons with pos-

Ur, v ~ Binom(1,0.7)Unif(—.1, —.06) | decoding kernels of excitatory
and inhibitory neurons with neg-
ative kernels

dt 10~% sec. Euler timestep for numerical in-
tegration

Ad 10Hz representational (decoder) leak
rate

Av 5Hz voltage leak rate

vF ol 107°,0 linear firing costs for excitatory

and inhibitory neurons

Except where noted, the same decoding kernels were used for all simulations.

Unless otherwise noted (e.g. the leaky integrator network), all simulations were
constructed to track variable x with dynamics X = c(t), with c(¢) defined as for
the integrator network (square wave function).

6.4. D. Quantifying network performance: relative error. Tracking error
was quantified by computing the relative error between the network estimate X
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and the tracked variable x:
(29)

6.5. E. Equations for a network with different excitatory and inhibitory
representational leak rates \;. Going through the same derivation as in ap-
pendix A, but now with different leak rates for the excitatory population A\¥ and
the inhibitory population AL, we get the following altered dynamics for inhibitory
neurons:

dV!
(80) o = AV (N - AT TP & i hy + TV T20" % — TV Tlo® + 1
As long as AF > AL this will result in the addition of "slow” recurrent synapses
between inhibitory neurons (the second term in the equation), on top of the ”fast”

ones (the last term).



