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How does spiking affect the dynamics of a functional network?

We find that two different integrator networks - one spiking and one not -
implement drastically different algorithms for integration

Particularly, the error-encoding membrane potential approach [1, 2, 3] to
building spiking integrator networks yields networks with idiosyncratic
dynamical properties

These properties endow such networks with several features that make it
highly advantageous over a linear rate network performing the same
computation [4, 5]

However, they make strong experimental predictions that may not hold in
biological brains

A spiking and non-spiking integrator network

Our goal is to build a recurrent network with readout signals r1(t), . . . , rN(t)
from each neuron that can be linearly summed to produce an estimate x̂(t)
tracking the integral of some d -dimensional time-varying input signal c(t):

N∑
i=1

Diri(t) = Dr(t) = x̂(t) ≈ x(t) =

∫ t

0

c(t ′)dt ′

How can we wire up a network to do this? We consider two previously
proposed recipes:
Linear rate network [4]

Without any input, network activity naturally decays to 0. But by tuning
the recurrent weights to provide a precise level of positive feedback [5], the
network can reliably control its estimate to perform integration

Because activity outside the low-dimensional coding space doesn’t change
the network estimate, the space of solutions allows for arbitrary dynamics in
this “nullspace”.

Leaky integrate-and-fire (LIF) network [1, 3, 2]

We want each neuron to spike whenever its contribution Di to x̂ reduces
the estimate error e(t) = x(t)− x̂(t)

This can be achieved by having each neuron’s membrane potential Vi(t)
track the alignment of e(t) with its decoding vector Di

Whenever the alignment is beyond firing threshold, the neuron will then fire
and its contribution to the estimate will cancel out the error

Two fundamentally different solutions to integration

Are these properties useful?

How can we distinguish between these experimentally?

Network Equations

We want to wire up the LIF network to achieve the following:

Vi(t) = FT
i e(t) = FT

i (x(t)− x̂(t)) = FT
i x(t)− FT

i Dr(t)

where FiDi > 0, thus enforcing that Vi roughly encode the alignment of e(t) and Di . Interpret the terms as
input weights Fi and recurrent weights Wi = −FT

i D, we obtain the following dynamics:

cmV̇i = −gL(Vi(t)− Vr) +
d∑
j=1

Fijcj(t) +
n∑

j=1

Wij ṙj(t) + σξ(t)

The PSC shape is thus constrained to be the derivative of the readout signal.
In the linear rate network, we assume dynamics

τ ṙ = −r + Wr + Fc + σξ

By precisely picking the synaptic weights, we can easily obtain a network whose readout is the integral of its input:

F = τDT(DDT)−1 + F⊥ W = DT(DDT)−1D + W⊥

where DF⊥ = DW⊥ = 0.

Conclusions

We find that the two networks implement drastically different
integration algorithms:

The linear rate network induces a strong correlation structure
to tightly control activity in the coding space, making it
susceptible to small perturbations that alter this structure
The LIF network actively decorrelates neurons with similar
decoding vectors in a chaotic fashion, endowing it with
particular robustness to perturbations

This is evidenced in the significantly higher dimensionality of
the dynamics of the LIF network, which is explained by its
consistently shorter autocorrelation timescale [6]

Consistent with the chaotic and decorrelative nature of the
algorithm, we find that the dynamics of the LIF integrator
network increase in dimensionality with increasing size,
suggesting that if such a network existed in the brain it should
be easily identified by uncharacteristically high-dimensional
dynamics (in the linear sense)

On the other hand, the linear rate network has the property
that any subsample of its neurons will show dynamics with the
same dimensionality as the network as a whole, which can also
be tested experimentally.

Further Questions

What about learning? The LIF network seems to more easily
accomodate integration of higher-dimensional signals, as
maintains a large space of solutions in this regime.

Can the spiking algorithm be implemented with a non-linear
rate network? Or is the spiking essential for a network to
implement this robust and efficient algorithm?

How would the presence of more realistic synaptic and
conductance-based dynamics in the LIF network affect its
dynamics? [2, 7]

Does this surprising relationship between network size and
dimensionality of dynamics hold for other computations under
the error-encoding framework? [1, 3]
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