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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.

Trial

S
uc

ce
ss

 ra
te

 (%
) A

cquisition tim
e (s)

200 1,200
0

100

0

6

200 1,200
Trial

0

6

a b

d

Within-manifold perturbation

0 1
Amount of learning

–0.5 0.5 0 1
Amount of learning

–0.5 0.5
0

10

N
um

be
r o

f s
es

si
on

s

Monkey J Monkey L

Relative success rate (%)

R
el

at
iv

e 
ac

qu
is

iti
on

 ti
m

e 
(s

)

–20–40 0

3

0

1

2

c

P < 10–6 P < 10–3

Outside-manifold perturbation

Perturbation

Raw learning
vectors

S
uc

ce
ss

 ra
te

 (%
)

0

100

A
cquisition tim

e (s)

0

6

Perturbation

Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.

RESEARCH LETTER

4 2 4 | N A T U R E | V O L 5 1 2 | 2 8 A U G U S T 2 0 1 4

Macmillan Publishers Limited. All rights reserved©2014

ne
ur

on
s

time

of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.

Trial

S
uc

ce
ss

 ra
te

 (%
) A

cquisition tim
e (s)

200 1,200
0

100

0

6

200 1,200
Trial

0

6

a b

d

Within-manifold perturbation

0 1
Amount of learning

–0.5 0.5 0 1
Amount of learning

–0.5 0.5
0

10

N
um

be
r o

f s
es

si
on

s

Monkey J Monkey L

Relative success rate (%)

R
el

at
iv

e 
ac

qu
is

iti
on

 ti
m

e 
(s

)

–20–40 0

3

0

1

2

c

P < 10–6 P < 10–3

Outside-manifold perturbation

Perturbation

Raw learning
vectors

S
uc

ce
ss

 ra
te

 (%
)

0

100

A
cquisition tim

e (s)

0

6

Perturbation

Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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“Neural constraints on learning”

of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.

Trial

S
uc

ce
ss

 ra
te

 (%
) A

cquisition tim
e (s)

200 1,200
0

100

0

6

200 1,200
Trial

0

6

a b

d

Within-manifold perturbation

0 1
Amount of learning

–0.5 0.5 0 1
Amount of learning

–0.5 0.5
0

10

N
um

be
r o

f s
es

si
on

s

Monkey J Monkey L

Relative success rate (%)

R
el

at
iv

e 
ac

qu
is

iti
on

 ti
m

e 
(s

)

–20–40 0

3

0

1

2

c

P < 10–6 P < 10–3

Outside-manifold perturbation

Perturbation

Raw learning
vectors

S
uc

ce
ss

 ra
te

 (%
)

0

100

A
cquisition tim

e (s)

0

6

Perturbation

Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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“Neural constraints on learning”

of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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“Neural constraints on learning”

of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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“Neural constraints on learning”

of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.

RESEARCH LETTER

4 2 4 | N A T U R E | V O L 5 1 2 | 2 8 A U G U S T 2 0 1 4

Macmillan Publishers Limited. All rights reserved©2014

of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.

RESEARCH LETTER

4 2 4 | N A T U R E | V O L 5 1 2 | 2 8 A U G U S T 2 0 1 4

Macmillan Publishers Limited. All rights reserved©2014

intuitive decoder
M1

Sadtler et al. (2014), Golub et al. (2018), 
Hennig et al. (2018), Oby et al. (2019)

intrinsic manifold



“Neural constraints on learning”

of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).

b

BCI
mapping

Neural activity

Time

U
ni

ts

Neural activity: 85–91D

Intrinsic manifold: 10D

Kinematics: 2D

Within-manifold
perturbation

Outside-manifold
perturbation

a

c

Dimensionalities for
experiments:

Outside-manifold
perturbation control space

Neural activity: 3D
Intrinsic manifold: 2D
Kinematics: 1D

Dimensionalities for diagrams:

Intrinsic
manifold

1

2

3

Excitatory Inhibitory

Intuitive

Same neural activity,
different cursor

velocities

d

U
ni

t 1
 F

R

Unit 2 FR
Unit 3 FR

U
ni

t 1
 F

R

Unit 2 FR
Unit 3 FR

U
ni

t 1
 F

R

Unit 2 FR
Unit 3 FR

Cursor velocity

BCI control space

Within-manifoldWithin-manifold
perturbation control spaceperturbation control space

control spacecontrol space

Within-manifold
perturbation control space

control space

Unit 1
Unit 2
Unit 3

Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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“Neural constraints on learning”

of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.

RESEARCH LETTER

4 2 4 | N A T U R E | V O L 5 1 2 | 2 8 A U G U S T 2 0 1 4

Macmillan Publishers Limited. All rights reserved©2014

intuitive decoder easy

inside-manifold 
perturbation

outside-manifold 
perturbation

M1

Sadtler et al. (2014), Golub et al. (2018), 
Hennig et al. (2018), Oby et al. (2019)

intrinsic manifold
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.

Trial

S
uc

ce
ss

 ra
te

 (%
) A

cquisition tim
e (s)

200 1,200
0

100

0

6

200 1,200
Trial

0

6

a b

d

Within-manifold perturbation

0 1
Amount of learning

–0.5 0.5 0 1
Amount of learning

–0.5 0.5
0

10

N
um

be
r o

f s
es

si
on

s

Monkey J Monkey L

Relative success rate (%)

R
el

at
iv

e 
ac

qu
is

iti
on

 ti
m

e 
(s

)

–20–40 0

3

0

1

2

c

P < 10–6 P < 10–3

Outside-manifold perturbation

Perturbation

Raw learning
vectors

S
uc

ce
ss

 ra
te

 (%
)

0

100

A
cquisition tim

e (s)

0

6

Perturbation

Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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“Neural constraints on learning”

of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
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mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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BMI Learning

of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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estimated intended velocities. Second, if the cursor is on target, the 
monkey’s best strategy is to keep the cursor still to satisfy the hold-time 
requirement. Thus, in the training set, we assumed that the monkey’s 
intention during these hold periods was to maintain the cursor position 
by commanding zero velocity. This zero-velocity assumption applied 
to the fitting of model parameters improved online performance with-
out changing the control algorithm (Supplementary Modeling and 
Supplementary Fig. 5). These estimated intentions and corresponding 
neural data were used to fit the ReFIT-KF control algorithm. Note that 
we applied the intention estimation only to training data: during online 
control the neural prosthesis has no knowledge of the task goal or place-
ment of targets (unlike, for example, in refs. 5,23,24).

The aforementioned training protocol used arm-controlled reaches 
as training data. In a paralyzed individual, it is not possible to record 
arm kinematics for this step. Instead, this training step could rely on the 
individual imagining a set of instructed movements. To test this possible 
strategy, we trained the initial algorithm based on visual-cue observa-
tion8,12, removing the requirement for arm control in step one. During 
these trials the monkey watched a computer-controlled training cursor 
that automatically moved to targets. The initial model was fit using auto-
mated training cursor trajectories and simultaneously recorded neural 
activity, without using measured arm movement (Online Methods). 
Table 1 summarizes ReFIT-KF performance for three experimental 
sessions from each monkey in which stage 1 of ReFIT-KF model train-
ing was based on observation data instead of arm movements. The 
performance, as measured by Fitts’s law25 (Supplementary Modeling), 
for these sessions was similar to that attained for the native arm con-
trol–initiated sessions described (Figs. 1 and 2).

Second innovation
The second design innovation builds on the observation that neural 
activity is correlated with both the velocity and the position of the 
cursor. Most existing neural prostheses model a relationship between 
neural activity and either velocity2,4 or position1,10. A clinical trial 
in humans has shown that neural prostheses modeling velocity have 
better performance than those modeling position11,12. However, 
if the control algorithm models only the velocity relationship, then 
position-based changes in firing will confound decoded velocities 
(Supplementary Modeling). To mitigate this effect, we explicitly mod-
eled velocity as the user’s intention and cursor position as an additional 
variable that affects neural output. This modification allows the user 
to control velocity with measured neural signals while accounting for 
the influence of cursor position. We explicitly assumed that the current 
cursor position, determined by integrating the previous velocity out-
put, is encoded in the neural activity along with the monkey’s current 
intended velocity output. Thus, the expected contribution of position 
to neural activity is removed, enabling more accurate estimation of 
intended velocity (Fig. 1 and Supplementary Modeling).

DISCUSSION
Other studies have noted the potential change in plant-and-control 
strategy and have addressed it by iteratively refining parameters dur-
ing experiments with neural prosthetics2,4,6,9,12,20,21. This approach 
recognizes that control strategies, and therefore model parameters, are 
best measured and understood during closed-loop neural prosthetic 
experiments. However, randomizing initial parameters2,4,21 may cre-
ate a control algorithm that never attains the best possible perform-
ance, just as optimization problems can easily become trapped in 
local optima (Supplementary Modeling). Although, if the recorded 
neural population and the neural control mapping are held constant, 
the consequences of the plant mismatch can be overcome through 
learning. Such learning has been demonstrated with neural control 
mappings built to reconstruct arm kinematics, as well as with a neural 
control mapping in which neuron identities have been shuffled, so the 
decoder output was no longer predictive of native arm kinematics7.

The focus of our study was to obtain high control performance in a 
single session by improving the neural control algorithm and optimizing  
its parameters. Although the neural prosthesis constitutes a new plant 
with different properties than the native arm, the motor cortices are 
involved in native arm control (for example, ref. 26). Therefore, we 
hypothesized that initializing a model with the relationship between neu-
ral activity and natural arm movement would allow the second stage of 
our training method to achieve greater optimization. Previous studies4,21 
have relied on manipulating the control task to refine the neural decoder, 
such as by providing assisted control. In those studies, an automated 
correct answer had been mixed with the output of the neural prosthesis. 
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Figure 4 Performance comparison of native arm versus ReFIT-KF for the 
obstacle-avoidance task. (a,b) In this task the monkey had to move the cursor 
from the initial target (labeled 0) to the final target (labeled 1; demand 
box shown as dotted line) without hitting the magenta-colored barrier. One 
representative cursor trace is shown from each of the four principal observed 
movement types: curve under, curve over, straight (no barrier) and collision 
into barrier. These data are from experiment J-2010-03-09. Native arm 
control (a) is shown in blue and ReFIT-KF control in red (b).

Figure 5 Illustrations of the online neural  
control paradigm and the ReFIT-KF training  
methodology. (a) The input to the control  
algorithm at time i is a vector of spike counts,  
yt, from implanted electrodes. yt is translated  
into a velocity output, vt to drive the cursor.  
(b) ReFIT-KF is trained in two stages. Initially,  
cursor kinematics and neural activity are  
collected during arm control or during an  
observation phase in which cursor movement is  
automated. These arm movement kinematics or observed  
cursor kinematics are regressed against neural activity to generate an initial control algorithm.  
Then, a new set of cursor kinematics and neural activity are collected using the initial algorithm in a closed loop.  
The kinematics collected during neural control (red vectors) are used to estimate intention by rotating the velocities toward the goal (blue vectors).  
This estimate of intended kinematics is regressed against neural activity to generate and run ReFIT-KF.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).

b

BCI
mapping

Neural activity

Time

U
ni

ts

Neural activity: 85–91D

Intrinsic manifold: 10D

Kinematics: 2D

Within-manifold
perturbation

Outside-manifold
perturbation

a

c

Dimensionalities for
experiments:

Outside-manifold
perturbation control space

Neural activity: 3D
Intrinsic manifold: 2D
Kinematics: 1D

Dimensionalities for diagrams:

Intrinsic
manifold

1

2

3

Excitatory Inhibitory

Intuitive

Same neural activity,
different cursor

velocities

d

U
ni

t 1
 F

R

Unit 2 FR
Unit 3 FR

U
ni

t 1
 F

R

Unit 2 FR
Unit 3 FR

U
ni

t 1
 F

R

Unit 2 FR
Unit 3 FR

Cursor velocity

BCI control space

Within-manifoldWithin-manifold
perturbation control spaceperturbation control space

control spacecontrol space

Within-manifold
perturbation control space

control space

Unit 1
Unit 2
Unit 3

Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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BMI Learning

of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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BMI learning, fast and slow [Sadtler et al. (2014)]
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estimated intended velocities. Second, if the cursor is on target, the 
monkey’s best strategy is to keep the cursor still to satisfy the hold-time 
requirement. Thus, in the training set, we assumed that the monkey’s 
intention during these hold periods was to maintain the cursor position 
by commanding zero velocity. This zero-velocity assumption applied 
to the fitting of model parameters improved online performance with-
out changing the control algorithm (Supplementary Modeling and 
Supplementary Fig. 5). These estimated intentions and corresponding 
neural data were used to fit the ReFIT-KF control algorithm. Note that 
we applied the intention estimation only to training data: during online 
control the neural prosthesis has no knowledge of the task goal or place-
ment of targets (unlike, for example, in refs. 5,23,24).

The aforementioned training protocol used arm-controlled reaches 
as training data. In a paralyzed individual, it is not possible to record 
arm kinematics for this step. Instead, this training step could rely on the 
individual imagining a set of instructed movements. To test this possible 
strategy, we trained the initial algorithm based on visual-cue observa-
tion8,12, removing the requirement for arm control in step one. During 
these trials the monkey watched a computer-controlled training cursor 
that automatically moved to targets. The initial model was fit using auto-
mated training cursor trajectories and simultaneously recorded neural 
activity, without using measured arm movement (Online Methods). 
Table 1 summarizes ReFIT-KF performance for three experimental 
sessions from each monkey in which stage 1 of ReFIT-KF model train-
ing was based on observation data instead of arm movements. The 
performance, as measured by Fitts’s law25 (Supplementary Modeling), 
for these sessions was similar to that attained for the native arm con-
trol–initiated sessions described (Figs. 1 and 2).

Second innovation
The second design innovation builds on the observation that neural 
activity is correlated with both the velocity and the position of the 
cursor. Most existing neural prostheses model a relationship between 
neural activity and either velocity2,4 or position1,10. A clinical trial 
in humans has shown that neural prostheses modeling velocity have 
better performance than those modeling position11,12. However, 
if the control algorithm models only the velocity relationship, then 
position-based changes in firing will confound decoded velocities 
(Supplementary Modeling). To mitigate this effect, we explicitly mod-
eled velocity as the user’s intention and cursor position as an additional 
variable that affects neural output. This modification allows the user 
to control velocity with measured neural signals while accounting for 
the influence of cursor position. We explicitly assumed that the current 
cursor position, determined by integrating the previous velocity out-
put, is encoded in the neural activity along with the monkey’s current 
intended velocity output. Thus, the expected contribution of position 
to neural activity is removed, enabling more accurate estimation of 
intended velocity (Fig. 1 and Supplementary Modeling).

DISCUSSION
Other studies have noted the potential change in plant-and-control 
strategy and have addressed it by iteratively refining parameters dur-
ing experiments with neural prosthetics2,4,6,9,12,20,21. This approach 
recognizes that control strategies, and therefore model parameters, are 
best measured and understood during closed-loop neural prosthetic 
experiments. However, randomizing initial parameters2,4,21 may cre-
ate a control algorithm that never attains the best possible perform-
ance, just as optimization problems can easily become trapped in 
local optima (Supplementary Modeling). Although, if the recorded 
neural population and the neural control mapping are held constant, 
the consequences of the plant mismatch can be overcome through 
learning. Such learning has been demonstrated with neural control 
mappings built to reconstruct arm kinematics, as well as with a neural 
control mapping in which neuron identities have been shuffled, so the 
decoder output was no longer predictive of native arm kinematics7.

The focus of our study was to obtain high control performance in a 
single session by improving the neural control algorithm and optimizing  
its parameters. Although the neural prosthesis constitutes a new plant 
with different properties than the native arm, the motor cortices are 
involved in native arm control (for example, ref. 26). Therefore, we 
hypothesized that initializing a model with the relationship between neu-
ral activity and natural arm movement would allow the second stage of 
our training method to achieve greater optimization. Previous studies4,21 
have relied on manipulating the control task to refine the neural decoder, 
such as by providing assisted control. In those studies, an automated 
correct answer had been mixed with the output of the neural prosthesis. 
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Figure 4 Performance comparison of native arm versus ReFIT-KF for the 
obstacle-avoidance task. (a,b) In this task the monkey had to move the cursor 
from the initial target (labeled 0) to the final target (labeled 1; demand 
box shown as dotted line) without hitting the magenta-colored barrier. One 
representative cursor trace is shown from each of the four principal observed 
movement types: curve under, curve over, straight (no barrier) and collision 
into barrier. These data are from experiment J-2010-03-09. Native arm 
control (a) is shown in blue and ReFIT-KF control in red (b).

Figure 5 Illustrations of the online neural  
control paradigm and the ReFIT-KF training  
methodology. (a) The input to the control  
algorithm at time i is a vector of spike counts,  
yt, from implanted electrodes. yt is translated  
into a velocity output, vt to drive the cursor.  
(b) ReFIT-KF is trained in two stages. Initially,  
cursor kinematics and neural activity are  
collected during arm control or during an  
observation phase in which cursor movement is  
automated. These arm movement kinematics or observed  
cursor kinematics are regressed against neural activity to generate an initial control algorithm.  
Then, a new set of cursor kinematics and neural activity are collected using the initial algorithm in a closed loop.  
The kinematics collected during neural control (red vectors) are used to estimate intention by rotating the velocities toward the goal (blue vectors).  
This estimate of intended kinematics is regressed against neural activity to generate and run ReFIT-KF.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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BMI Learning

of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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BMI learning, fast and slow [Sadtler et al. (2014)]
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estimated intended velocities. Second, if the cursor is on target, the 
monkey’s best strategy is to keep the cursor still to satisfy the hold-time 
requirement. Thus, in the training set, we assumed that the monkey’s 
intention during these hold periods was to maintain the cursor position 
by commanding zero velocity. This zero-velocity assumption applied 
to the fitting of model parameters improved online performance with-
out changing the control algorithm (Supplementary Modeling and 
Supplementary Fig. 5). These estimated intentions and corresponding 
neural data were used to fit the ReFIT-KF control algorithm. Note that 
we applied the intention estimation only to training data: during online 
control the neural prosthesis has no knowledge of the task goal or place-
ment of targets (unlike, for example, in refs. 5,23,24).

The aforementioned training protocol used arm-controlled reaches 
as training data. In a paralyzed individual, it is not possible to record 
arm kinematics for this step. Instead, this training step could rely on the 
individual imagining a set of instructed movements. To test this possible 
strategy, we trained the initial algorithm based on visual-cue observa-
tion8,12, removing the requirement for arm control in step one. During 
these trials the monkey watched a computer-controlled training cursor 
that automatically moved to targets. The initial model was fit using auto-
mated training cursor trajectories and simultaneously recorded neural 
activity, without using measured arm movement (Online Methods). 
Table 1 summarizes ReFIT-KF performance for three experimental 
sessions from each monkey in which stage 1 of ReFIT-KF model train-
ing was based on observation data instead of arm movements. The 
performance, as measured by Fitts’s law25 (Supplementary Modeling), 
for these sessions was similar to that attained for the native arm con-
trol–initiated sessions described (Figs. 1 and 2).

Second innovation
The second design innovation builds on the observation that neural 
activity is correlated with both the velocity and the position of the 
cursor. Most existing neural prostheses model a relationship between 
neural activity and either velocity2,4 or position1,10. A clinical trial 
in humans has shown that neural prostheses modeling velocity have 
better performance than those modeling position11,12. However, 
if the control algorithm models only the velocity relationship, then 
position-based changes in firing will confound decoded velocities 
(Supplementary Modeling). To mitigate this effect, we explicitly mod-
eled velocity as the user’s intention and cursor position as an additional 
variable that affects neural output. This modification allows the user 
to control velocity with measured neural signals while accounting for 
the influence of cursor position. We explicitly assumed that the current 
cursor position, determined by integrating the previous velocity out-
put, is encoded in the neural activity along with the monkey’s current 
intended velocity output. Thus, the expected contribution of position 
to neural activity is removed, enabling more accurate estimation of 
intended velocity (Fig. 1 and Supplementary Modeling).

DISCUSSION
Other studies have noted the potential change in plant-and-control 
strategy and have addressed it by iteratively refining parameters dur-
ing experiments with neural prosthetics2,4,6,9,12,20,21. This approach 
recognizes that control strategies, and therefore model parameters, are 
best measured and understood during closed-loop neural prosthetic 
experiments. However, randomizing initial parameters2,4,21 may cre-
ate a control algorithm that never attains the best possible perform-
ance, just as optimization problems can easily become trapped in 
local optima (Supplementary Modeling). Although, if the recorded 
neural population and the neural control mapping are held constant, 
the consequences of the plant mismatch can be overcome through 
learning. Such learning has been demonstrated with neural control 
mappings built to reconstruct arm kinematics, as well as with a neural 
control mapping in which neuron identities have been shuffled, so the 
decoder output was no longer predictive of native arm kinematics7.

The focus of our study was to obtain high control performance in a 
single session by improving the neural control algorithm and optimizing  
its parameters. Although the neural prosthesis constitutes a new plant 
with different properties than the native arm, the motor cortices are 
involved in native arm control (for example, ref. 26). Therefore, we 
hypothesized that initializing a model with the relationship between neu-
ral activity and natural arm movement would allow the second stage of 
our training method to achieve greater optimization. Previous studies4,21 
have relied on manipulating the control task to refine the neural decoder, 
such as by providing assisted control. In those studies, an automated 
correct answer had been mixed with the output of the neural prosthesis. 
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Figure 4 Performance comparison of native arm versus ReFIT-KF for the 
obstacle-avoidance task. (a,b) In this task the monkey had to move the cursor 
from the initial target (labeled 0) to the final target (labeled 1; demand 
box shown as dotted line) without hitting the magenta-colored barrier. One 
representative cursor trace is shown from each of the four principal observed 
movement types: curve under, curve over, straight (no barrier) and collision 
into barrier. These data are from experiment J-2010-03-09. Native arm 
control (a) is shown in blue and ReFIT-KF control in red (b).

Figure 5 Illustrations of the online neural  
control paradigm and the ReFIT-KF training  
methodology. (a) The input to the control  
algorithm at time i is a vector of spike counts,  
yt, from implanted electrodes. yt is translated  
into a velocity output, vt to drive the cursor.  
(b) ReFIT-KF is trained in two stages. Initially,  
cursor kinematics and neural activity are  
collected during arm control or during an  
observation phase in which cursor movement is  
automated. These arm movement kinematics or observed  
cursor kinematics are regressed against neural activity to generate an initial control algorithm.  
Then, a new set of cursor kinematics and neural activity are collected using the initial algorithm in a closed loop.  
The kinematics collected during neural control (red vectors) are used to estimate intention by rotating the velocities toward the goal (blue vectors).  
This estimate of intended kinematics is regressed against neural activity to generate and run ReFIT-KF.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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BMI Learning

of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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estimated intended velocities. Second, if the cursor is on target, the 
monkey’s best strategy is to keep the cursor still to satisfy the hold-time 
requirement. Thus, in the training set, we assumed that the monkey’s 
intention during these hold periods was to maintain the cursor position 
by commanding zero velocity. This zero-velocity assumption applied 
to the fitting of model parameters improved online performance with-
out changing the control algorithm (Supplementary Modeling and 
Supplementary Fig. 5). These estimated intentions and corresponding 
neural data were used to fit the ReFIT-KF control algorithm. Note that 
we applied the intention estimation only to training data: during online 
control the neural prosthesis has no knowledge of the task goal or place-
ment of targets (unlike, for example, in refs. 5,23,24).

The aforementioned training protocol used arm-controlled reaches 
as training data. In a paralyzed individual, it is not possible to record 
arm kinematics for this step. Instead, this training step could rely on the 
individual imagining a set of instructed movements. To test this possible 
strategy, we trained the initial algorithm based on visual-cue observa-
tion8,12, removing the requirement for arm control in step one. During 
these trials the monkey watched a computer-controlled training cursor 
that automatically moved to targets. The initial model was fit using auto-
mated training cursor trajectories and simultaneously recorded neural 
activity, without using measured arm movement (Online Methods). 
Table 1 summarizes ReFIT-KF performance for three experimental 
sessions from each monkey in which stage 1 of ReFIT-KF model train-
ing was based on observation data instead of arm movements. The 
performance, as measured by Fitts’s law25 (Supplementary Modeling), 
for these sessions was similar to that attained for the native arm con-
trol–initiated sessions described (Figs. 1 and 2).

Second innovation
The second design innovation builds on the observation that neural 
activity is correlated with both the velocity and the position of the 
cursor. Most existing neural prostheses model a relationship between 
neural activity and either velocity2,4 or position1,10. A clinical trial 
in humans has shown that neural prostheses modeling velocity have 
better performance than those modeling position11,12. However, 
if the control algorithm models only the velocity relationship, then 
position-based changes in firing will confound decoded velocities 
(Supplementary Modeling). To mitigate this effect, we explicitly mod-
eled velocity as the user’s intention and cursor position as an additional 
variable that affects neural output. This modification allows the user 
to control velocity with measured neural signals while accounting for 
the influence of cursor position. We explicitly assumed that the current 
cursor position, determined by integrating the previous velocity out-
put, is encoded in the neural activity along with the monkey’s current 
intended velocity output. Thus, the expected contribution of position 
to neural activity is removed, enabling more accurate estimation of 
intended velocity (Fig. 1 and Supplementary Modeling).

DISCUSSION
Other studies have noted the potential change in plant-and-control 
strategy and have addressed it by iteratively refining parameters dur-
ing experiments with neural prosthetics2,4,6,9,12,20,21. This approach 
recognizes that control strategies, and therefore model parameters, are 
best measured and understood during closed-loop neural prosthetic 
experiments. However, randomizing initial parameters2,4,21 may cre-
ate a control algorithm that never attains the best possible perform-
ance, just as optimization problems can easily become trapped in 
local optima (Supplementary Modeling). Although, if the recorded 
neural population and the neural control mapping are held constant, 
the consequences of the plant mismatch can be overcome through 
learning. Such learning has been demonstrated with neural control 
mappings built to reconstruct arm kinematics, as well as with a neural 
control mapping in which neuron identities have been shuffled, so the 
decoder output was no longer predictive of native arm kinematics7.

The focus of our study was to obtain high control performance in a 
single session by improving the neural control algorithm and optimizing  
its parameters. Although the neural prosthesis constitutes a new plant 
with different properties than the native arm, the motor cortices are 
involved in native arm control (for example, ref. 26). Therefore, we 
hypothesized that initializing a model with the relationship between neu-
ral activity and natural arm movement would allow the second stage of 
our training method to achieve greater optimization. Previous studies4,21 
have relied on manipulating the control task to refine the neural decoder, 
such as by providing assisted control. In those studies, an automated 
correct answer had been mixed with the output of the neural prosthesis. 
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Figure 4 Performance comparison of native arm versus ReFIT-KF for the 
obstacle-avoidance task. (a,b) In this task the monkey had to move the cursor 
from the initial target (labeled 0) to the final target (labeled 1; demand 
box shown as dotted line) without hitting the magenta-colored barrier. One 
representative cursor trace is shown from each of the four principal observed 
movement types: curve under, curve over, straight (no barrier) and collision 
into barrier. These data are from experiment J-2010-03-09. Native arm 
control (a) is shown in blue and ReFIT-KF control in red (b).

Figure 5 Illustrations of the online neural  
control paradigm and the ReFIT-KF training  
methodology. (a) The input to the control  
algorithm at time i is a vector of spike counts,  
yt, from implanted electrodes. yt is translated  
into a velocity output, vt to drive the cursor.  
(b) ReFIT-KF is trained in two stages. Initially,  
cursor kinematics and neural activity are  
collected during arm control or during an  
observation phase in which cursor movement is  
automated. These arm movement kinematics or observed  
cursor kinematics are regressed against neural activity to generate an initial control algorithm.  
Then, a new set of cursor kinematics and neural activity are collected using the initial algorithm in a closed loop.  
The kinematics collected during neural control (red vectors) are used to estimate intention by rotating the velocities toward the goal (blue vectors).  
This estimate of intended kinematics is regressed against neural activity to generate and run ReFIT-KF.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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BMI Learning

of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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estimated intended velocities. Second, if the cursor is on target, the 
monkey’s best strategy is to keep the cursor still to satisfy the hold-time 
requirement. Thus, in the training set, we assumed that the monkey’s 
intention during these hold periods was to maintain the cursor position 
by commanding zero velocity. This zero-velocity assumption applied 
to the fitting of model parameters improved online performance with-
out changing the control algorithm (Supplementary Modeling and 
Supplementary Fig. 5). These estimated intentions and corresponding 
neural data were used to fit the ReFIT-KF control algorithm. Note that 
we applied the intention estimation only to training data: during online 
control the neural prosthesis has no knowledge of the task goal or place-
ment of targets (unlike, for example, in refs. 5,23,24).

The aforementioned training protocol used arm-controlled reaches 
as training data. In a paralyzed individual, it is not possible to record 
arm kinematics for this step. Instead, this training step could rely on the 
individual imagining a set of instructed movements. To test this possible 
strategy, we trained the initial algorithm based on visual-cue observa-
tion8,12, removing the requirement for arm control in step one. During 
these trials the monkey watched a computer-controlled training cursor 
that automatically moved to targets. The initial model was fit using auto-
mated training cursor trajectories and simultaneously recorded neural 
activity, without using measured arm movement (Online Methods). 
Table 1 summarizes ReFIT-KF performance for three experimental 
sessions from each monkey in which stage 1 of ReFIT-KF model train-
ing was based on observation data instead of arm movements. The 
performance, as measured by Fitts’s law25 (Supplementary Modeling), 
for these sessions was similar to that attained for the native arm con-
trol–initiated sessions described (Figs. 1 and 2).

Second innovation
The second design innovation builds on the observation that neural 
activity is correlated with both the velocity and the position of the 
cursor. Most existing neural prostheses model a relationship between 
neural activity and either velocity2,4 or position1,10. A clinical trial 
in humans has shown that neural prostheses modeling velocity have 
better performance than those modeling position11,12. However, 
if the control algorithm models only the velocity relationship, then 
position-based changes in firing will confound decoded velocities 
(Supplementary Modeling). To mitigate this effect, we explicitly mod-
eled velocity as the user’s intention and cursor position as an additional 
variable that affects neural output. This modification allows the user 
to control velocity with measured neural signals while accounting for 
the influence of cursor position. We explicitly assumed that the current 
cursor position, determined by integrating the previous velocity out-
put, is encoded in the neural activity along with the monkey’s current 
intended velocity output. Thus, the expected contribution of position 
to neural activity is removed, enabling more accurate estimation of 
intended velocity (Fig. 1 and Supplementary Modeling).

DISCUSSION
Other studies have noted the potential change in plant-and-control 
strategy and have addressed it by iteratively refining parameters dur-
ing experiments with neural prosthetics2,4,6,9,12,20,21. This approach 
recognizes that control strategies, and therefore model parameters, are 
best measured and understood during closed-loop neural prosthetic 
experiments. However, randomizing initial parameters2,4,21 may cre-
ate a control algorithm that never attains the best possible perform-
ance, just as optimization problems can easily become trapped in 
local optima (Supplementary Modeling). Although, if the recorded 
neural population and the neural control mapping are held constant, 
the consequences of the plant mismatch can be overcome through 
learning. Such learning has been demonstrated with neural control 
mappings built to reconstruct arm kinematics, as well as with a neural 
control mapping in which neuron identities have been shuffled, so the 
decoder output was no longer predictive of native arm kinematics7.

The focus of our study was to obtain high control performance in a 
single session by improving the neural control algorithm and optimizing  
its parameters. Although the neural prosthesis constitutes a new plant 
with different properties than the native arm, the motor cortices are 
involved in native arm control (for example, ref. 26). Therefore, we 
hypothesized that initializing a model with the relationship between neu-
ral activity and natural arm movement would allow the second stage of 
our training method to achieve greater optimization. Previous studies4,21 
have relied on manipulating the control task to refine the neural decoder, 
such as by providing assisted control. In those studies, an automated 
correct answer had been mixed with the output of the neural prosthesis. 
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ReFIT-KFNative arma b
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Figure 4 Performance comparison of native arm versus ReFIT-KF for the 
obstacle-avoidance task. (a,b) In this task the monkey had to move the cursor 
from the initial target (labeled 0) to the final target (labeled 1; demand 
box shown as dotted line) without hitting the magenta-colored barrier. One 
representative cursor trace is shown from each of the four principal observed 
movement types: curve under, curve over, straight (no barrier) and collision 
into barrier. These data are from experiment J-2010-03-09. Native arm 
control (a) is shown in blue and ReFIT-KF control in red (b).

Figure 5 Illustrations of the online neural  
control paradigm and the ReFIT-KF training  
methodology. (a) The input to the control  
algorithm at time i is a vector of spike counts,  
yt, from implanted electrodes. yt is translated  
into a velocity output, vt to drive the cursor.  
(b) ReFIT-KF is trained in two stages. Initially,  
cursor kinematics and neural activity are  
collected during arm control or during an  
observation phase in which cursor movement is  
automated. These arm movement kinematics or observed  
cursor kinematics are regressed against neural activity to generate an initial control algorithm.  
Then, a new set of cursor kinematics and neural activity are collected using the initial algorithm in a closed loop.  
The kinematics collected during neural control (red vectors) are used to estimate intention by rotating the velocities toward the goal (blue vectors).  
This estimate of intended kinematics is regressed against neural activity to generate and run ReFIT-KF.
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SUMMARY

1)Hypothesis : BMI learning = optimizing

upstream inputs within a low-d manifold
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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BMI Learning

of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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estimated intended velocities. Second, if the cursor is on target, the 
monkey’s best strategy is to keep the cursor still to satisfy the hold-time 
requirement. Thus, in the training set, we assumed that the monkey’s 
intention during these hold periods was to maintain the cursor position 
by commanding zero velocity. This zero-velocity assumption applied 
to the fitting of model parameters improved online performance with-
out changing the control algorithm (Supplementary Modeling and 
Supplementary Fig. 5). These estimated intentions and corresponding 
neural data were used to fit the ReFIT-KF control algorithm. Note that 
we applied the intention estimation only to training data: during online 
control the neural prosthesis has no knowledge of the task goal or place-
ment of targets (unlike, for example, in refs. 5,23,24).

The aforementioned training protocol used arm-controlled reaches 
as training data. In a paralyzed individual, it is not possible to record 
arm kinematics for this step. Instead, this training step could rely on the 
individual imagining a set of instructed movements. To test this possible 
strategy, we trained the initial algorithm based on visual-cue observa-
tion8,12, removing the requirement for arm control in step one. During 
these trials the monkey watched a computer-controlled training cursor 
that automatically moved to targets. The initial model was fit using auto-
mated training cursor trajectories and simultaneously recorded neural 
activity, without using measured arm movement (Online Methods). 
Table 1 summarizes ReFIT-KF performance for three experimental 
sessions from each monkey in which stage 1 of ReFIT-KF model train-
ing was based on observation data instead of arm movements. The 
performance, as measured by Fitts’s law25 (Supplementary Modeling), 
for these sessions was similar to that attained for the native arm con-
trol–initiated sessions described (Figs. 1 and 2).

Second innovation
The second design innovation builds on the observation that neural 
activity is correlated with both the velocity and the position of the 
cursor. Most existing neural prostheses model a relationship between 
neural activity and either velocity2,4 or position1,10. A clinical trial 
in humans has shown that neural prostheses modeling velocity have 
better performance than those modeling position11,12. However, 
if the control algorithm models only the velocity relationship, then 
position-based changes in firing will confound decoded velocities 
(Supplementary Modeling). To mitigate this effect, we explicitly mod-
eled velocity as the user’s intention and cursor position as an additional 
variable that affects neural output. This modification allows the user 
to control velocity with measured neural signals while accounting for 
the influence of cursor position. We explicitly assumed that the current 
cursor position, determined by integrating the previous velocity out-
put, is encoded in the neural activity along with the monkey’s current 
intended velocity output. Thus, the expected contribution of position 
to neural activity is removed, enabling more accurate estimation of 
intended velocity (Fig. 1 and Supplementary Modeling).

DISCUSSION
Other studies have noted the potential change in plant-and-control 
strategy and have addressed it by iteratively refining parameters dur-
ing experiments with neural prosthetics2,4,6,9,12,20,21. This approach 
recognizes that control strategies, and therefore model parameters, are 
best measured and understood during closed-loop neural prosthetic 
experiments. However, randomizing initial parameters2,4,21 may cre-
ate a control algorithm that never attains the best possible perform-
ance, just as optimization problems can easily become trapped in 
local optima (Supplementary Modeling). Although, if the recorded 
neural population and the neural control mapping are held constant, 
the consequences of the plant mismatch can be overcome through 
learning. Such learning has been demonstrated with neural control 
mappings built to reconstruct arm kinematics, as well as with a neural 
control mapping in which neuron identities have been shuffled, so the 
decoder output was no longer predictive of native arm kinematics7.

The focus of our study was to obtain high control performance in a 
single session by improving the neural control algorithm and optimizing  
its parameters. Although the neural prosthesis constitutes a new plant 
with different properties than the native arm, the motor cortices are 
involved in native arm control (for example, ref. 26). Therefore, we 
hypothesized that initializing a model with the relationship between neu-
ral activity and natural arm movement would allow the second stage of 
our training method to achieve greater optimization. Previous studies4,21 
have relied on manipulating the control task to refine the neural decoder, 
such as by providing assisted control. In those studies, an automated 
correct answer had been mixed with the output of the neural prosthesis. 
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Figure 4 Performance comparison of native arm versus ReFIT-KF for the 
obstacle-avoidance task. (a,b) In this task the monkey had to move the cursor 
from the initial target (labeled 0) to the final target (labeled 1; demand 
box shown as dotted line) without hitting the magenta-colored barrier. One 
representative cursor trace is shown from each of the four principal observed 
movement types: curve under, curve over, straight (no barrier) and collision 
into barrier. These data are from experiment J-2010-03-09. Native arm 
control (a) is shown in blue and ReFIT-KF control in red (b).

Figure 5 Illustrations of the online neural  
control paradigm and the ReFIT-KF training  
methodology. (a) The input to the control  
algorithm at time i is a vector of spike counts,  
yt, from implanted electrodes. yt is translated  
into a velocity output, vt to drive the cursor.  
(b) ReFIT-KF is trained in two stages. Initially,  
cursor kinematics and neural activity are  
collected during arm control or during an  
observation phase in which cursor movement is  
automated. These arm movement kinematics or observed  
cursor kinematics are regressed against neural activity to generate an initial control algorithm.  
Then, a new set of cursor kinematics and neural activity are collected using the initial algorithm in a closed loop.  
The kinematics collected during neural control (red vectors) are used to estimate intention by rotating the velocities toward the goal (blue vectors).  
This estimate of intended kinematics is regressed against neural activity to generate and run ReFIT-KF.
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SUMMARY

1)Hypothesis : BMI learning = optimizing

upstream inputs within a low-d manifold

2)Can explain behavioral and neural
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3)Such a mechanism could also underlie
slow-timescale BMI learning, obviating
the need to re-structure the local M1 circuit
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).

b

BCI
mapping

Neural activity

Time

U
ni

ts

Neural activity: 85–91D

Intrinsic manifold: 10D

Kinematics: 2D

Within-manifold
perturbation

Outside-manifold
perturbation

a

c

Dimensionalities for
experiments:

Outside-manifold
perturbation control space

Neural activity: 3D
Intrinsic manifold: 2D
Kinematics: 1D

Dimensionalities for diagrams:

Intrinsic
manifold

1

2

3

Excitatory Inhibitory

Intuitive

Same neural activity,
different cursor

velocities

d

U
ni

t 1
 F

R

Unit 2 FR
Unit 3 FR

U
ni

t 1
 F

R

Unit 2 FR
Unit 3 FR

U
ni

t 1
 F

R

Unit 2 FR
Unit 3 FR

Cursor velocity

BCI control space

Within-manifoldWithin-manifold
perturbation control spaceperturbation control space

control spacecontrol space

Within-manifold
perturbation control space

control space

Unit 1
Unit 2
Unit 3

Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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BMI Learning

of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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estimated intended velocities. Second, if the cursor is on target, the 
monkey’s best strategy is to keep the cursor still to satisfy the hold-time 
requirement. Thus, in the training set, we assumed that the monkey’s 
intention during these hold periods was to maintain the cursor position 
by commanding zero velocity. This zero-velocity assumption applied 
to the fitting of model parameters improved online performance with-
out changing the control algorithm (Supplementary Modeling and 
Supplementary Fig. 5). These estimated intentions and corresponding 
neural data were used to fit the ReFIT-KF control algorithm. Note that 
we applied the intention estimation only to training data: during online 
control the neural prosthesis has no knowledge of the task goal or place-
ment of targets (unlike, for example, in refs. 5,23,24).

The aforementioned training protocol used arm-controlled reaches 
as training data. In a paralyzed individual, it is not possible to record 
arm kinematics for this step. Instead, this training step could rely on the 
individual imagining a set of instructed movements. To test this possible 
strategy, we trained the initial algorithm based on visual-cue observa-
tion8,12, removing the requirement for arm control in step one. During 
these trials the monkey watched a computer-controlled training cursor 
that automatically moved to targets. The initial model was fit using auto-
mated training cursor trajectories and simultaneously recorded neural 
activity, without using measured arm movement (Online Methods). 
Table 1 summarizes ReFIT-KF performance for three experimental 
sessions from each monkey in which stage 1 of ReFIT-KF model train-
ing was based on observation data instead of arm movements. The 
performance, as measured by Fitts’s law25 (Supplementary Modeling), 
for these sessions was similar to that attained for the native arm con-
trol–initiated sessions described (Figs. 1 and 2).

Second innovation
The second design innovation builds on the observation that neural 
activity is correlated with both the velocity and the position of the 
cursor. Most existing neural prostheses model a relationship between 
neural activity and either velocity2,4 or position1,10. A clinical trial 
in humans has shown that neural prostheses modeling velocity have 
better performance than those modeling position11,12. However, 
if the control algorithm models only the velocity relationship, then 
position-based changes in firing will confound decoded velocities 
(Supplementary Modeling). To mitigate this effect, we explicitly mod-
eled velocity as the user’s intention and cursor position as an additional 
variable that affects neural output. This modification allows the user 
to control velocity with measured neural signals while accounting for 
the influence of cursor position. We explicitly assumed that the current 
cursor position, determined by integrating the previous velocity out-
put, is encoded in the neural activity along with the monkey’s current 
intended velocity output. Thus, the expected contribution of position 
to neural activity is removed, enabling more accurate estimation of 
intended velocity (Fig. 1 and Supplementary Modeling).

DISCUSSION
Other studies have noted the potential change in plant-and-control 
strategy and have addressed it by iteratively refining parameters dur-
ing experiments with neural prosthetics2,4,6,9,12,20,21. This approach 
recognizes that control strategies, and therefore model parameters, are 
best measured and understood during closed-loop neural prosthetic 
experiments. However, randomizing initial parameters2,4,21 may cre-
ate a control algorithm that never attains the best possible perform-
ance, just as optimization problems can easily become trapped in 
local optima (Supplementary Modeling). Although, if the recorded 
neural population and the neural control mapping are held constant, 
the consequences of the plant mismatch can be overcome through 
learning. Such learning has been demonstrated with neural control 
mappings built to reconstruct arm kinematics, as well as with a neural 
control mapping in which neuron identities have been shuffled, so the 
decoder output was no longer predictive of native arm kinematics7.

The focus of our study was to obtain high control performance in a 
single session by improving the neural control algorithm and optimizing  
its parameters. Although the neural prosthesis constitutes a new plant 
with different properties than the native arm, the motor cortices are 
involved in native arm control (for example, ref. 26). Therefore, we 
hypothesized that initializing a model with the relationship between neu-
ral activity and natural arm movement would allow the second stage of 
our training method to achieve greater optimization. Previous studies4,21 
have relied on manipulating the control task to refine the neural decoder, 
such as by providing assisted control. In those studies, an automated 
correct answer had been mixed with the output of the neural prosthesis. 
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Figure 4 Performance comparison of native arm versus ReFIT-KF for the 
obstacle-avoidance task. (a,b) In this task the monkey had to move the cursor 
from the initial target (labeled 0) to the final target (labeled 1; demand 
box shown as dotted line) without hitting the magenta-colored barrier. One 
representative cursor trace is shown from each of the four principal observed 
movement types: curve under, curve over, straight (no barrier) and collision 
into barrier. These data are from experiment J-2010-03-09. Native arm 
control (a) is shown in blue and ReFIT-KF control in red (b).

Figure 5 Illustrations of the online neural  
control paradigm and the ReFIT-KF training  
methodology. (a) The input to the control  
algorithm at time i is a vector of spike counts,  
yt, from implanted electrodes. yt is translated  
into a velocity output, vt to drive the cursor.  
(b) ReFIT-KF is trained in two stages. Initially,  
cursor kinematics and neural activity are  
collected during arm control or during an  
observation phase in which cursor movement is  
automated. These arm movement kinematics or observed  
cursor kinematics are regressed against neural activity to generate an initial control algorithm.  
Then, a new set of cursor kinematics and neural activity are collected using the initial algorithm in a closed loop.  
The kinematics collected during neural control (red vectors) are used to estimate intention by rotating the velocities toward the goal (blue vectors).  
This estimate of intended kinematics is regressed against neural activity to generate and run ReFIT-KF.
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SUMMARY

1)Hypothesis : BMI learning = optimizing

upstream inputs within a low-d manifold

2)Can explain behavioral and neural

observations of fast-timescale BMI

learning in M1 [Sadtler et al. ’14, Golub et al. ’18]

3)Such a mechanism could also underlie
slow-timescale BMI learning, obviating
the need to re-structure the local M1 circuit
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.

RESEARCH LETTER

4 2 4 | N A T U R E | V O L 5 1 2 | 2 8 A U G U S T 2 0 1 4

Macmillan Publishers Limited. All rights reserved©2014

of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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BMI Learning

of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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estimated intended velocities. Second, if the cursor is on target, the 
monkey’s best strategy is to keep the cursor still to satisfy the hold-time 
requirement. Thus, in the training set, we assumed that the monkey’s 
intention during these hold periods was to maintain the cursor position 
by commanding zero velocity. This zero-velocity assumption applied 
to the fitting of model parameters improved online performance with-
out changing the control algorithm (Supplementary Modeling and 
Supplementary Fig. 5). These estimated intentions and corresponding 
neural data were used to fit the ReFIT-KF control algorithm. Note that 
we applied the intention estimation only to training data: during online 
control the neural prosthesis has no knowledge of the task goal or place-
ment of targets (unlike, for example, in refs. 5,23,24).

The aforementioned training protocol used arm-controlled reaches 
as training data. In a paralyzed individual, it is not possible to record 
arm kinematics for this step. Instead, this training step could rely on the 
individual imagining a set of instructed movements. To test this possible 
strategy, we trained the initial algorithm based on visual-cue observa-
tion8,12, removing the requirement for arm control in step one. During 
these trials the monkey watched a computer-controlled training cursor 
that automatically moved to targets. The initial model was fit using auto-
mated training cursor trajectories and simultaneously recorded neural 
activity, without using measured arm movement (Online Methods). 
Table 1 summarizes ReFIT-KF performance for three experimental 
sessions from each monkey in which stage 1 of ReFIT-KF model train-
ing was based on observation data instead of arm movements. The 
performance, as measured by Fitts’s law25 (Supplementary Modeling), 
for these sessions was similar to that attained for the native arm con-
trol–initiated sessions described (Figs. 1 and 2).

Second innovation
The second design innovation builds on the observation that neural 
activity is correlated with both the velocity and the position of the 
cursor. Most existing neural prostheses model a relationship between 
neural activity and either velocity2,4 or position1,10. A clinical trial 
in humans has shown that neural prostheses modeling velocity have 
better performance than those modeling position11,12. However, 
if the control algorithm models only the velocity relationship, then 
position-based changes in firing will confound decoded velocities 
(Supplementary Modeling). To mitigate this effect, we explicitly mod-
eled velocity as the user’s intention and cursor position as an additional 
variable that affects neural output. This modification allows the user 
to control velocity with measured neural signals while accounting for 
the influence of cursor position. We explicitly assumed that the current 
cursor position, determined by integrating the previous velocity out-
put, is encoded in the neural activity along with the monkey’s current 
intended velocity output. Thus, the expected contribution of position 
to neural activity is removed, enabling more accurate estimation of 
intended velocity (Fig. 1 and Supplementary Modeling).

DISCUSSION
Other studies have noted the potential change in plant-and-control 
strategy and have addressed it by iteratively refining parameters dur-
ing experiments with neural prosthetics2,4,6,9,12,20,21. This approach 
recognizes that control strategies, and therefore model parameters, are 
best measured and understood during closed-loop neural prosthetic 
experiments. However, randomizing initial parameters2,4,21 may cre-
ate a control algorithm that never attains the best possible perform-
ance, just as optimization problems can easily become trapped in 
local optima (Supplementary Modeling). Although, if the recorded 
neural population and the neural control mapping are held constant, 
the consequences of the plant mismatch can be overcome through 
learning. Such learning has been demonstrated with neural control 
mappings built to reconstruct arm kinematics, as well as with a neural 
control mapping in which neuron identities have been shuffled, so the 
decoder output was no longer predictive of native arm kinematics7.

The focus of our study was to obtain high control performance in a 
single session by improving the neural control algorithm and optimizing  
its parameters. Although the neural prosthesis constitutes a new plant 
with different properties than the native arm, the motor cortices are 
involved in native arm control (for example, ref. 26). Therefore, we 
hypothesized that initializing a model with the relationship between neu-
ral activity and natural arm movement would allow the second stage of 
our training method to achieve greater optimization. Previous studies4,21 
have relied on manipulating the control task to refine the neural decoder, 
such as by providing assisted control. In those studies, an automated 
correct answer had been mixed with the output of the neural prosthesis. 
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Figure 4 Performance comparison of native arm versus ReFIT-KF for the 
obstacle-avoidance task. (a,b) In this task the monkey had to move the cursor 
from the initial target (labeled 0) to the final target (labeled 1; demand 
box shown as dotted line) without hitting the magenta-colored barrier. One 
representative cursor trace is shown from each of the four principal observed 
movement types: curve under, curve over, straight (no barrier) and collision 
into barrier. These data are from experiment J-2010-03-09. Native arm 
control (a) is shown in blue and ReFIT-KF control in red (b).

Figure 5 Illustrations of the online neural  
control paradigm and the ReFIT-KF training  
methodology. (a) The input to the control  
algorithm at time i is a vector of spike counts,  
yt, from implanted electrodes. yt is translated  
into a velocity output, vt to drive the cursor.  
(b) ReFIT-KF is trained in two stages. Initially,  
cursor kinematics and neural activity are  
collected during arm control or during an  
observation phase in which cursor movement is  
automated. These arm movement kinematics or observed  
cursor kinematics are regressed against neural activity to generate an initial control algorithm.  
Then, a new set of cursor kinematics and neural activity are collected using the initial algorithm in a closed loop.  
The kinematics collected during neural control (red vectors) are used to estimate intention by rotating the velocities toward the goal (blue vectors).  
This estimate of intended kinematics is regressed against neural activity to generate and run ReFIT-KF.
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SUMMARY

1)Hypothesis : BMI learning = optimizing

upstream inputs within a low-d manifold

2)Can explain behavioral and neural

observations of fast-timescale BMI

learning in M1 [Sadtler et al. ’14, Golub et al. ’18]

3)Such a mechanism could also underlie
slow-timescale BMI learning, obviating
the need to re-structure the local M1 circuit
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.

RESEARCH LETTER

4 2 4 | N A T U R E | V O L 5 1 2 | 2 8 A U G U S T 2 0 1 4

Macmillan Publishers Limited. All rights reserved©2014

of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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BMI Learning

of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
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modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
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different cursor velocities (open circles and inset) under different mappings.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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estimated intended velocities. Second, if the cursor is on target, the 
monkey’s best strategy is to keep the cursor still to satisfy the hold-time 
requirement. Thus, in the training set, we assumed that the monkey’s 
intention during these hold periods was to maintain the cursor position 
by commanding zero velocity. This zero-velocity assumption applied 
to the fitting of model parameters improved online performance with-
out changing the control algorithm (Supplementary Modeling and 
Supplementary Fig. 5). These estimated intentions and corresponding 
neural data were used to fit the ReFIT-KF control algorithm. Note that 
we applied the intention estimation only to training data: during online 
control the neural prosthesis has no knowledge of the task goal or place-
ment of targets (unlike, for example, in refs. 5,23,24).

The aforementioned training protocol used arm-controlled reaches 
as training data. In a paralyzed individual, it is not possible to record 
arm kinematics for this step. Instead, this training step could rely on the 
individual imagining a set of instructed movements. To test this possible 
strategy, we trained the initial algorithm based on visual-cue observa-
tion8,12, removing the requirement for arm control in step one. During 
these trials the monkey watched a computer-controlled training cursor 
that automatically moved to targets. The initial model was fit using auto-
mated training cursor trajectories and simultaneously recorded neural 
activity, without using measured arm movement (Online Methods). 
Table 1 summarizes ReFIT-KF performance for three experimental 
sessions from each monkey in which stage 1 of ReFIT-KF model train-
ing was based on observation data instead of arm movements. The 
performance, as measured by Fitts’s law25 (Supplementary Modeling), 
for these sessions was similar to that attained for the native arm con-
trol–initiated sessions described (Figs. 1 and 2).

Second innovation
The second design innovation builds on the observation that neural 
activity is correlated with both the velocity and the position of the 
cursor. Most existing neural prostheses model a relationship between 
neural activity and either velocity2,4 or position1,10. A clinical trial 
in humans has shown that neural prostheses modeling velocity have 
better performance than those modeling position11,12. However, 
if the control algorithm models only the velocity relationship, then 
position-based changes in firing will confound decoded velocities 
(Supplementary Modeling). To mitigate this effect, we explicitly mod-
eled velocity as the user’s intention and cursor position as an additional 
variable that affects neural output. This modification allows the user 
to control velocity with measured neural signals while accounting for 
the influence of cursor position. We explicitly assumed that the current 
cursor position, determined by integrating the previous velocity out-
put, is encoded in the neural activity along with the monkey’s current 
intended velocity output. Thus, the expected contribution of position 
to neural activity is removed, enabling more accurate estimation of 
intended velocity (Fig. 1 and Supplementary Modeling).

DISCUSSION
Other studies have noted the potential change in plant-and-control 
strategy and have addressed it by iteratively refining parameters dur-
ing experiments with neural prosthetics2,4,6,9,12,20,21. This approach 
recognizes that control strategies, and therefore model parameters, are 
best measured and understood during closed-loop neural prosthetic 
experiments. However, randomizing initial parameters2,4,21 may cre-
ate a control algorithm that never attains the best possible perform-
ance, just as optimization problems can easily become trapped in 
local optima (Supplementary Modeling). Although, if the recorded 
neural population and the neural control mapping are held constant, 
the consequences of the plant mismatch can be overcome through 
learning. Such learning has been demonstrated with neural control 
mappings built to reconstruct arm kinematics, as well as with a neural 
control mapping in which neuron identities have been shuffled, so the 
decoder output was no longer predictive of native arm kinematics7.

The focus of our study was to obtain high control performance in a 
single session by improving the neural control algorithm and optimizing  
its parameters. Although the neural prosthesis constitutes a new plant 
with different properties than the native arm, the motor cortices are 
involved in native arm control (for example, ref. 26). Therefore, we 
hypothesized that initializing a model with the relationship between neu-
ral activity and natural arm movement would allow the second stage of 
our training method to achieve greater optimization. Previous studies4,21 
have relied on manipulating the control task to refine the neural decoder, 
such as by providing assisted control. In those studies, an automated 
correct answer had been mixed with the output of the neural prosthesis. 
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Figure 4 Performance comparison of native arm versus ReFIT-KF for the 
obstacle-avoidance task. (a,b) In this task the monkey had to move the cursor 
from the initial target (labeled 0) to the final target (labeled 1; demand 
box shown as dotted line) without hitting the magenta-colored barrier. One 
representative cursor trace is shown from each of the four principal observed 
movement types: curve under, curve over, straight (no barrier) and collision 
into barrier. These data are from experiment J-2010-03-09. Native arm 
control (a) is shown in blue and ReFIT-KF control in red (b).

Figure 5 Illustrations of the online neural  
control paradigm and the ReFIT-KF training  
methodology. (a) The input to the control  
algorithm at time i is a vector of spike counts,  
yt, from implanted electrodes. yt is translated  
into a velocity output, vt to drive the cursor.  
(b) ReFIT-KF is trained in two stages. Initially,  
cursor kinematics and neural activity are  
collected during arm control or during an  
observation phase in which cursor movement is  
automated. These arm movement kinematics or observed  
cursor kinematics are regressed against neural activity to generate an initial control algorithm.  
Then, a new set of cursor kinematics and neural activity are collected using the initial algorithm in a closed loop.  
The kinematics collected during neural control (red vectors) are used to estimate intention by rotating the velocities toward the goal (blue vectors).  
This estimate of intended kinematics is regressed against neural activity to generate and run ReFIT-KF.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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BMI Learning

of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
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the perturbed mapping. c, Quantifying the amount of learning. Black dot,
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projected onto the maximum learning vector, normalized by the length of the
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1 indicates complete learning of the relationship between neural activity and
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within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
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Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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estimated intended velocities. Second, if the cursor is on target, the 
monkey’s best strategy is to keep the cursor still to satisfy the hold-time 
requirement. Thus, in the training set, we assumed that the monkey’s 
intention during these hold periods was to maintain the cursor position 
by commanding zero velocity. This zero-velocity assumption applied 
to the fitting of model parameters improved online performance with-
out changing the control algorithm (Supplementary Modeling and 
Supplementary Fig. 5). These estimated intentions and corresponding 
neural data were used to fit the ReFIT-KF control algorithm. Note that 
we applied the intention estimation only to training data: during online 
control the neural prosthesis has no knowledge of the task goal or place-
ment of targets (unlike, for example, in refs. 5,23,24).

The aforementioned training protocol used arm-controlled reaches 
as training data. In a paralyzed individual, it is not possible to record 
arm kinematics for this step. Instead, this training step could rely on the 
individual imagining a set of instructed movements. To test this possible 
strategy, we trained the initial algorithm based on visual-cue observa-
tion8,12, removing the requirement for arm control in step one. During 
these trials the monkey watched a computer-controlled training cursor 
that automatically moved to targets. The initial model was fit using auto-
mated training cursor trajectories and simultaneously recorded neural 
activity, without using measured arm movement (Online Methods). 
Table 1 summarizes ReFIT-KF performance for three experimental 
sessions from each monkey in which stage 1 of ReFIT-KF model train-
ing was based on observation data instead of arm movements. The 
performance, as measured by Fitts’s law25 (Supplementary Modeling), 
for these sessions was similar to that attained for the native arm con-
trol–initiated sessions described (Figs. 1 and 2).

Second innovation
The second design innovation builds on the observation that neural 
activity is correlated with both the velocity and the position of the 
cursor. Most existing neural prostheses model a relationship between 
neural activity and either velocity2,4 or position1,10. A clinical trial 
in humans has shown that neural prostheses modeling velocity have 
better performance than those modeling position11,12. However, 
if the control algorithm models only the velocity relationship, then 
position-based changes in firing will confound decoded velocities 
(Supplementary Modeling). To mitigate this effect, we explicitly mod-
eled velocity as the user’s intention and cursor position as an additional 
variable that affects neural output. This modification allows the user 
to control velocity with measured neural signals while accounting for 
the influence of cursor position. We explicitly assumed that the current 
cursor position, determined by integrating the previous velocity out-
put, is encoded in the neural activity along with the monkey’s current 
intended velocity output. Thus, the expected contribution of position 
to neural activity is removed, enabling more accurate estimation of 
intended velocity (Fig. 1 and Supplementary Modeling).

DISCUSSION
Other studies have noted the potential change in plant-and-control 
strategy and have addressed it by iteratively refining parameters dur-
ing experiments with neural prosthetics2,4,6,9,12,20,21. This approach 
recognizes that control strategies, and therefore model parameters, are 
best measured and understood during closed-loop neural prosthetic 
experiments. However, randomizing initial parameters2,4,21 may cre-
ate a control algorithm that never attains the best possible perform-
ance, just as optimization problems can easily become trapped in 
local optima (Supplementary Modeling). Although, if the recorded 
neural population and the neural control mapping are held constant, 
the consequences of the plant mismatch can be overcome through 
learning. Such learning has been demonstrated with neural control 
mappings built to reconstruct arm kinematics, as well as with a neural 
control mapping in which neuron identities have been shuffled, so the 
decoder output was no longer predictive of native arm kinematics7.

The focus of our study was to obtain high control performance in a 
single session by improving the neural control algorithm and optimizing  
its parameters. Although the neural prosthesis constitutes a new plant 
with different properties than the native arm, the motor cortices are 
involved in native arm control (for example, ref. 26). Therefore, we 
hypothesized that initializing a model with the relationship between neu-
ral activity and natural arm movement would allow the second stage of 
our training method to achieve greater optimization. Previous studies4,21 
have relied on manipulating the control task to refine the neural decoder, 
such as by providing assisted control. In those studies, an automated 
correct answer had been mixed with the output of the neural prosthesis. 
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Figure 4 Performance comparison of native arm versus ReFIT-KF for the 
obstacle-avoidance task. (a,b) In this task the monkey had to move the cursor 
from the initial target (labeled 0) to the final target (labeled 1; demand 
box shown as dotted line) without hitting the magenta-colored barrier. One 
representative cursor trace is shown from each of the four principal observed 
movement types: curve under, curve over, straight (no barrier) and collision 
into barrier. These data are from experiment J-2010-03-09. Native arm 
control (a) is shown in blue and ReFIT-KF control in red (b).

Figure 5 Illustrations of the online neural  
control paradigm and the ReFIT-KF training  
methodology. (a) The input to the control  
algorithm at time i is a vector of spike counts,  
yt, from implanted electrodes. yt is translated  
into a velocity output, vt to drive the cursor.  
(b) ReFIT-KF is trained in two stages. Initially,  
cursor kinematics and neural activity are  
collected during arm control or during an  
observation phase in which cursor movement is  
automated. These arm movement kinematics or observed  
cursor kinematics are regressed against neural activity to generate an initial control algorithm.  
Then, a new set of cursor kinematics and neural activity are collected using the initial algorithm in a closed loop.  
The kinematics collected during neural control (red vectors) are used to estimate intention by rotating the velocities toward the goal (blue vectors).  
This estimate of intended kinematics is regressed against neural activity to generate and run ReFIT-KF.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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estimated intended velocities. Second, if the cursor is on target, the 
monkey’s best strategy is to keep the cursor still to satisfy the hold-time 
requirement. Thus, in the training set, we assumed that the monkey’s 
intention during these hold periods was to maintain the cursor position 
by commanding zero velocity. This zero-velocity assumption applied 
to the fitting of model parameters improved online performance with-
out changing the control algorithm (Supplementary Modeling and 
Supplementary Fig. 5). These estimated intentions and corresponding 
neural data were used to fit the ReFIT-KF control algorithm. Note that 
we applied the intention estimation only to training data: during online 
control the neural prosthesis has no knowledge of the task goal or place-
ment of targets (unlike, for example, in refs. 5,23,24).

The aforementioned training protocol used arm-controlled reaches 
as training data. In a paralyzed individual, it is not possible to record 
arm kinematics for this step. Instead, this training step could rely on the 
individual imagining a set of instructed movements. To test this possible 
strategy, we trained the initial algorithm based on visual-cue observa-
tion8,12, removing the requirement for arm control in step one. During 
these trials the monkey watched a computer-controlled training cursor 
that automatically moved to targets. The initial model was fit using auto-
mated training cursor trajectories and simultaneously recorded neural 
activity, without using measured arm movement (Online Methods). 
Table 1 summarizes ReFIT-KF performance for three experimental 
sessions from each monkey in which stage 1 of ReFIT-KF model train-
ing was based on observation data instead of arm movements. The 
performance, as measured by Fitts’s law25 (Supplementary Modeling), 
for these sessions was similar to that attained for the native arm con-
trol–initiated sessions described (Figs. 1 and 2).

Second innovation
The second design innovation builds on the observation that neural 
activity is correlated with both the velocity and the position of the 
cursor. Most existing neural prostheses model a relationship between 
neural activity and either velocity2,4 or position1,10. A clinical trial 
in humans has shown that neural prostheses modeling velocity have 
better performance than those modeling position11,12. However, 
if the control algorithm models only the velocity relationship, then 
position-based changes in firing will confound decoded velocities 
(Supplementary Modeling). To mitigate this effect, we explicitly mod-
eled velocity as the user’s intention and cursor position as an additional 
variable that affects neural output. This modification allows the user 
to control velocity with measured neural signals while accounting for 
the influence of cursor position. We explicitly assumed that the current 
cursor position, determined by integrating the previous velocity out-
put, is encoded in the neural activity along with the monkey’s current 
intended velocity output. Thus, the expected contribution of position 
to neural activity is removed, enabling more accurate estimation of 
intended velocity (Fig. 1 and Supplementary Modeling).

DISCUSSION
Other studies have noted the potential change in plant-and-control 
strategy and have addressed it by iteratively refining parameters dur-
ing experiments with neural prosthetics2,4,6,9,12,20,21. This approach 
recognizes that control strategies, and therefore model parameters, are 
best measured and understood during closed-loop neural prosthetic 
experiments. However, randomizing initial parameters2,4,21 may cre-
ate a control algorithm that never attains the best possible perform-
ance, just as optimization problems can easily become trapped in 
local optima (Supplementary Modeling). Although, if the recorded 
neural population and the neural control mapping are held constant, 
the consequences of the plant mismatch can be overcome through 
learning. Such learning has been demonstrated with neural control 
mappings built to reconstruct arm kinematics, as well as with a neural 
control mapping in which neuron identities have been shuffled, so the 
decoder output was no longer predictive of native arm kinematics7.

The focus of our study was to obtain high control performance in a 
single session by improving the neural control algorithm and optimizing  
its parameters. Although the neural prosthesis constitutes a new plant 
with different properties than the native arm, the motor cortices are 
involved in native arm control (for example, ref. 26). Therefore, we 
hypothesized that initializing a model with the relationship between neu-
ral activity and natural arm movement would allow the second stage of 
our training method to achieve greater optimization. Previous studies4,21 
have relied on manipulating the control task to refine the neural decoder, 
such as by providing assisted control. In those studies, an automated 
correct answer had been mixed with the output of the neural prosthesis. 
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Figure 4 Performance comparison of native arm versus ReFIT-KF for the 
obstacle-avoidance task. (a,b) In this task the monkey had to move the cursor 
from the initial target (labeled 0) to the final target (labeled 1; demand 
box shown as dotted line) without hitting the magenta-colored barrier. One 
representative cursor trace is shown from each of the four principal observed 
movement types: curve under, curve over, straight (no barrier) and collision 
into barrier. These data are from experiment J-2010-03-09. Native arm 
control (a) is shown in blue and ReFIT-KF control in red (b).

Figure 5 Illustrations of the online neural  
control paradigm and the ReFIT-KF training  
methodology. (a) The input to the control  
algorithm at time i is a vector of spike counts,  
yt, from implanted electrodes. yt is translated  
into a velocity output, vt to drive the cursor.  
(b) ReFIT-KF is trained in two stages. Initially,  
cursor kinematics and neural activity are  
collected during arm control or during an  
observation phase in which cursor movement is  
automated. These arm movement kinematics or observed  
cursor kinematics are regressed against neural activity to generate an initial control algorithm.  
Then, a new set of cursor kinematics and neural activity are collected using the initial algorithm in a closed loop.  
The kinematics collected during neural control (red vectors) are used to estimate intention by rotating the velocities toward the goal (blue vectors).  
This estimate of intended kinematics is regressed against neural activity to generate and run ReFIT-KF.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.

Trial

S
uc

ce
ss

 ra
te

 (%
) A

cquisition tim
e (s)

200 1,200
0

100

0

6

200 1,200
Trial

0

6

a b

d

Within-manifold perturbation

0 1
Amount of learning

–0.5 0.5 0 1
Amount of learning

–0.5 0.5
0

10

N
um

be
r o

f s
es

si
on

s

Monkey J Monkey L

Relative success rate (%)

R
el

at
iv

e 
ac

qu
is

iti
on

 ti
m

e 
(s

)

–20–40 0

3

0

1

2

c

P < 10–6 P < 10–3

Outside-manifold perturbation

Perturbation

Raw learning
vectors

S
uc

ce
ss

 ra
te

 (%
)

0

100

A
cquisition tim

e (s)

0

6

Perturbation

Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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· ẋ = Ax + By
∆ x(t) = Fy + F0x(0)
F =

⇣
eA t

· ≠ I
⌘

A≠1B
F0 = eA t

·

BMI learning, fast and slow [Sadtler et al. (2014)]

NATURE NEUROSCIENCE VOLUME 15 | NUMBER 12 | DECEMBER 2012 1755

T E C H N I C A L  R E P O R T S

ytyt – 1yt – 2
Control

algorithm
Spike

counts

Cursor
velocity

a

Vt – 2 Vt – 1
Vt

yt
yt

Vt VtytOnline
control
mode

Parameter fitting

Arm control kinematics

b

vt

Stageone

Stagetwo

Recorded cursor kinematics
Estimated cursor kinematics

Initial control
algorithm 

ReFIT-KF control
algorithm Arm controlled or observation

yt

vt

estimated intended velocities. Second, if the cursor is on target, the 
monkey’s best strategy is to keep the cursor still to satisfy the hold-time 
requirement. Thus, in the training set, we assumed that the monkey’s 
intention during these hold periods was to maintain the cursor position 
by commanding zero velocity. This zero-velocity assumption applied 
to the fitting of model parameters improved online performance with-
out changing the control algorithm (Supplementary Modeling and 
Supplementary Fig. 5). These estimated intentions and corresponding 
neural data were used to fit the ReFIT-KF control algorithm. Note that 
we applied the intention estimation only to training data: during online 
control the neural prosthesis has no knowledge of the task goal or place-
ment of targets (unlike, for example, in refs. 5,23,24).

The aforementioned training protocol used arm-controlled reaches 
as training data. In a paralyzed individual, it is not possible to record 
arm kinematics for this step. Instead, this training step could rely on the 
individual imagining a set of instructed movements. To test this possible 
strategy, we trained the initial algorithm based on visual-cue observa-
tion8,12, removing the requirement for arm control in step one. During 
these trials the monkey watched a computer-controlled training cursor 
that automatically moved to targets. The initial model was fit using auto-
mated training cursor trajectories and simultaneously recorded neural 
activity, without using measured arm movement (Online Methods). 
Table 1 summarizes ReFIT-KF performance for three experimental 
sessions from each monkey in which stage 1 of ReFIT-KF model train-
ing was based on observation data instead of arm movements. The 
performance, as measured by Fitts’s law25 (Supplementary Modeling), 
for these sessions was similar to that attained for the native arm con-
trol–initiated sessions described (Figs. 1 and 2).

Second innovation
The second design innovation builds on the observation that neural 
activity is correlated with both the velocity and the position of the 
cursor. Most existing neural prostheses model a relationship between 
neural activity and either velocity2,4 or position1,10. A clinical trial 
in humans has shown that neural prostheses modeling velocity have 
better performance than those modeling position11,12. However, 
if the control algorithm models only the velocity relationship, then 
position-based changes in firing will confound decoded velocities 
(Supplementary Modeling). To mitigate this effect, we explicitly mod-
eled velocity as the user’s intention and cursor position as an additional 
variable that affects neural output. This modification allows the user 
to control velocity with measured neural signals while accounting for 
the influence of cursor position. We explicitly assumed that the current 
cursor position, determined by integrating the previous velocity out-
put, is encoded in the neural activity along with the monkey’s current 
intended velocity output. Thus, the expected contribution of position 
to neural activity is removed, enabling more accurate estimation of 
intended velocity (Fig. 1 and Supplementary Modeling).

DISCUSSION
Other studies have noted the potential change in plant-and-control 
strategy and have addressed it by iteratively refining parameters dur-
ing experiments with neural prosthetics2,4,6,9,12,20,21. This approach 
recognizes that control strategies, and therefore model parameters, are 
best measured and understood during closed-loop neural prosthetic 
experiments. However, randomizing initial parameters2,4,21 may cre-
ate a control algorithm that never attains the best possible perform-
ance, just as optimization problems can easily become trapped in 
local optima (Supplementary Modeling). Although, if the recorded 
neural population and the neural control mapping are held constant, 
the consequences of the plant mismatch can be overcome through 
learning. Such learning has been demonstrated with neural control 
mappings built to reconstruct arm kinematics, as well as with a neural 
control mapping in which neuron identities have been shuffled, so the 
decoder output was no longer predictive of native arm kinematics7.

The focus of our study was to obtain high control performance in a 
single session by improving the neural control algorithm and optimizing  
its parameters. Although the neural prosthesis constitutes a new plant 
with different properties than the native arm, the motor cortices are 
involved in native arm control (for example, ref. 26). Therefore, we 
hypothesized that initializing a model with the relationship between neu-
ral activity and natural arm movement would allow the second stage of 
our training method to achieve greater optimization. Previous studies4,21 
have relied on manipulating the control task to refine the neural decoder, 
such as by providing assisted control. In those studies, an automated 
correct answer had been mixed with the output of the neural prosthesis. 
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Figure 4 Performance comparison of native arm versus ReFIT-KF for the 
obstacle-avoidance task. (a,b) In this task the monkey had to move the cursor 
from the initial target (labeled 0) to the final target (labeled 1; demand 
box shown as dotted line) without hitting the magenta-colored barrier. One 
representative cursor trace is shown from each of the four principal observed 
movement types: curve under, curve over, straight (no barrier) and collision 
into barrier. These data are from experiment J-2010-03-09. Native arm 
control (a) is shown in blue and ReFIT-KF control in red (b).

Figure 5 Illustrations of the online neural  
control paradigm and the ReFIT-KF training  
methodology. (a) The input to the control  
algorithm at time i is a vector of spike counts,  
yt, from implanted electrodes. yt is translated  
into a velocity output, vt to drive the cursor.  
(b) ReFIT-KF is trained in two stages. Initially,  
cursor kinematics and neural activity are  
collected during arm control or during an  
observation phase in which cursor movement is  
automated. These arm movement kinematics or observed  
cursor kinematics are regressed against neural activity to generate an initial control algorithm.  
Then, a new set of cursor kinematics and neural activity are collected using the initial algorithm in a closed loop.  
The kinematics collected during neural control (red vectors) are used to estimate intention by rotating the velocities toward the goal (blue vectors).  
This estimate of intended kinematics is regressed against neural activity to generate and run ReFIT-KF.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.

Trial

S
uc

ce
ss

 ra
te

 (%
) A

cquisition tim
e (s)

200 1,200
0

100

0

6

200 1,200
Trial

0

6

a b

d

Within-manifold perturbation

0 1
Amount of learning

–0.5 0.5 0 1
Amount of learning

–0.5 0.5
0

10

N
um

be
r o

f s
es

si
on

s

Monkey J Monkey L

Relative success rate (%)

R
el

at
iv

e 
ac

qu
is

iti
on

 ti
m

e 
(s

)

–20–40 0

3

0

1

2

c

P < 10–6 P < 10–3

Outside-manifold perturbation

Perturbation

Raw learning
vectors

S
uc

ce
ss

 ra
te

 (%
)

0

100

A
cquisition tim

e (s)

0

6

Perturbation

Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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estimated intended velocities. Second, if the cursor is on target, the 
monkey’s best strategy is to keep the cursor still to satisfy the hold-time 
requirement. Thus, in the training set, we assumed that the monkey’s 
intention during these hold periods was to maintain the cursor position 
by commanding zero velocity. This zero-velocity assumption applied 
to the fitting of model parameters improved online performance with-
out changing the control algorithm (Supplementary Modeling and 
Supplementary Fig. 5). These estimated intentions and corresponding 
neural data were used to fit the ReFIT-KF control algorithm. Note that 
we applied the intention estimation only to training data: during online 
control the neural prosthesis has no knowledge of the task goal or place-
ment of targets (unlike, for example, in refs. 5,23,24).

The aforementioned training protocol used arm-controlled reaches 
as training data. In a paralyzed individual, it is not possible to record 
arm kinematics for this step. Instead, this training step could rely on the 
individual imagining a set of instructed movements. To test this possible 
strategy, we trained the initial algorithm based on visual-cue observa-
tion8,12, removing the requirement for arm control in step one. During 
these trials the monkey watched a computer-controlled training cursor 
that automatically moved to targets. The initial model was fit using auto-
mated training cursor trajectories and simultaneously recorded neural 
activity, without using measured arm movement (Online Methods). 
Table 1 summarizes ReFIT-KF performance for three experimental 
sessions from each monkey in which stage 1 of ReFIT-KF model train-
ing was based on observation data instead of arm movements. The 
performance, as measured by Fitts’s law25 (Supplementary Modeling), 
for these sessions was similar to that attained for the native arm con-
trol–initiated sessions described (Figs. 1 and 2).

Second innovation
The second design innovation builds on the observation that neural 
activity is correlated with both the velocity and the position of the 
cursor. Most existing neural prostheses model a relationship between 
neural activity and either velocity2,4 or position1,10. A clinical trial 
in humans has shown that neural prostheses modeling velocity have 
better performance than those modeling position11,12. However, 
if the control algorithm models only the velocity relationship, then 
position-based changes in firing will confound decoded velocities 
(Supplementary Modeling). To mitigate this effect, we explicitly mod-
eled velocity as the user’s intention and cursor position as an additional 
variable that affects neural output. This modification allows the user 
to control velocity with measured neural signals while accounting for 
the influence of cursor position. We explicitly assumed that the current 
cursor position, determined by integrating the previous velocity out-
put, is encoded in the neural activity along with the monkey’s current 
intended velocity output. Thus, the expected contribution of position 
to neural activity is removed, enabling more accurate estimation of 
intended velocity (Fig. 1 and Supplementary Modeling).

DISCUSSION
Other studies have noted the potential change in plant-and-control 
strategy and have addressed it by iteratively refining parameters dur-
ing experiments with neural prosthetics2,4,6,9,12,20,21. This approach 
recognizes that control strategies, and therefore model parameters, are 
best measured and understood during closed-loop neural prosthetic 
experiments. However, randomizing initial parameters2,4,21 may cre-
ate a control algorithm that never attains the best possible perform-
ance, just as optimization problems can easily become trapped in 
local optima (Supplementary Modeling). Although, if the recorded 
neural population and the neural control mapping are held constant, 
the consequences of the plant mismatch can be overcome through 
learning. Such learning has been demonstrated with neural control 
mappings built to reconstruct arm kinematics, as well as with a neural 
control mapping in which neuron identities have been shuffled, so the 
decoder output was no longer predictive of native arm kinematics7.

The focus of our study was to obtain high control performance in a 
single session by improving the neural control algorithm and optimizing  
its parameters. Although the neural prosthesis constitutes a new plant 
with different properties than the native arm, the motor cortices are 
involved in native arm control (for example, ref. 26). Therefore, we 
hypothesized that initializing a model with the relationship between neu-
ral activity and natural arm movement would allow the second stage of 
our training method to achieve greater optimization. Previous studies4,21 
have relied on manipulating the control task to refine the neural decoder, 
such as by providing assisted control. In those studies, an automated 
correct answer had been mixed with the output of the neural prosthesis. 

5 cm

1

0

01

010 1

01

ReFIT-KFNative arma b
0

011

01

Figure 4 Performance comparison of native arm versus ReFIT-KF for the 
obstacle-avoidance task. (a,b) In this task the monkey had to move the cursor 
from the initial target (labeled 0) to the final target (labeled 1; demand 
box shown as dotted line) without hitting the magenta-colored barrier. One 
representative cursor trace is shown from each of the four principal observed 
movement types: curve under, curve over, straight (no barrier) and collision 
into barrier. These data are from experiment J-2010-03-09. Native arm 
control (a) is shown in blue and ReFIT-KF control in red (b).

Figure 5 Illustrations of the online neural  
control paradigm and the ReFIT-KF training  
methodology. (a) The input to the control  
algorithm at time i is a vector of spike counts,  
yt, from implanted electrodes. yt is translated  
into a velocity output, vt to drive the cursor.  
(b) ReFIT-KF is trained in two stages. Initially,  
cursor kinematics and neural activity are  
collected during arm control or during an  
observation phase in which cursor movement is  
automated. These arm movement kinematics or observed  
cursor kinematics are regressed against neural activity to generate an initial control algorithm.  
Then, a new set of cursor kinematics and neural activity are collected using the initial algorithm in a closed loop.  
The kinematics collected during neural control (red vectors) are used to estimate intention by rotating the velocities toward the goal (blue vectors).  
This estimate of intended kinematics is regressed against neural activity to generate and run ReFIT-KF.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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estimated intended velocities. Second, if the cursor is on target, the 
monkey’s best strategy is to keep the cursor still to satisfy the hold-time 
requirement. Thus, in the training set, we assumed that the monkey’s 
intention during these hold periods was to maintain the cursor position 
by commanding zero velocity. This zero-velocity assumption applied 
to the fitting of model parameters improved online performance with-
out changing the control algorithm (Supplementary Modeling and 
Supplementary Fig. 5). These estimated intentions and corresponding 
neural data were used to fit the ReFIT-KF control algorithm. Note that 
we applied the intention estimation only to training data: during online 
control the neural prosthesis has no knowledge of the task goal or place-
ment of targets (unlike, for example, in refs. 5,23,24).

The aforementioned training protocol used arm-controlled reaches 
as training data. In a paralyzed individual, it is not possible to record 
arm kinematics for this step. Instead, this training step could rely on the 
individual imagining a set of instructed movements. To test this possible 
strategy, we trained the initial algorithm based on visual-cue observa-
tion8,12, removing the requirement for arm control in step one. During 
these trials the monkey watched a computer-controlled training cursor 
that automatically moved to targets. The initial model was fit using auto-
mated training cursor trajectories and simultaneously recorded neural 
activity, without using measured arm movement (Online Methods). 
Table 1 summarizes ReFIT-KF performance for three experimental 
sessions from each monkey in which stage 1 of ReFIT-KF model train-
ing was based on observation data instead of arm movements. The 
performance, as measured by Fitts’s law25 (Supplementary Modeling), 
for these sessions was similar to that attained for the native arm con-
trol–initiated sessions described (Figs. 1 and 2).

Second innovation
The second design innovation builds on the observation that neural 
activity is correlated with both the velocity and the position of the 
cursor. Most existing neural prostheses model a relationship between 
neural activity and either velocity2,4 or position1,10. A clinical trial 
in humans has shown that neural prostheses modeling velocity have 
better performance than those modeling position11,12. However, 
if the control algorithm models only the velocity relationship, then 
position-based changes in firing will confound decoded velocities 
(Supplementary Modeling). To mitigate this effect, we explicitly mod-
eled velocity as the user’s intention and cursor position as an additional 
variable that affects neural output. This modification allows the user 
to control velocity with measured neural signals while accounting for 
the influence of cursor position. We explicitly assumed that the current 
cursor position, determined by integrating the previous velocity out-
put, is encoded in the neural activity along with the monkey’s current 
intended velocity output. Thus, the expected contribution of position 
to neural activity is removed, enabling more accurate estimation of 
intended velocity (Fig. 1 and Supplementary Modeling).

DISCUSSION
Other studies have noted the potential change in plant-and-control 
strategy and have addressed it by iteratively refining parameters dur-
ing experiments with neural prosthetics2,4,6,9,12,20,21. This approach 
recognizes that control strategies, and therefore model parameters, are 
best measured and understood during closed-loop neural prosthetic 
experiments. However, randomizing initial parameters2,4,21 may cre-
ate a control algorithm that never attains the best possible perform-
ance, just as optimization problems can easily become trapped in 
local optima (Supplementary Modeling). Although, if the recorded 
neural population and the neural control mapping are held constant, 
the consequences of the plant mismatch can be overcome through 
learning. Such learning has been demonstrated with neural control 
mappings built to reconstruct arm kinematics, as well as with a neural 
control mapping in which neuron identities have been shuffled, so the 
decoder output was no longer predictive of native arm kinematics7.

The focus of our study was to obtain high control performance in a 
single session by improving the neural control algorithm and optimizing  
its parameters. Although the neural prosthesis constitutes a new plant 
with different properties than the native arm, the motor cortices are 
involved in native arm control (for example, ref. 26). Therefore, we 
hypothesized that initializing a model with the relationship between neu-
ral activity and natural arm movement would allow the second stage of 
our training method to achieve greater optimization. Previous studies4,21 
have relied on manipulating the control task to refine the neural decoder, 
such as by providing assisted control. In those studies, an automated 
correct answer had been mixed with the output of the neural prosthesis. 
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Figure 4 Performance comparison of native arm versus ReFIT-KF for the 
obstacle-avoidance task. (a,b) In this task the monkey had to move the cursor 
from the initial target (labeled 0) to the final target (labeled 1; demand 
box shown as dotted line) without hitting the magenta-colored barrier. One 
representative cursor trace is shown from each of the four principal observed 
movement types: curve under, curve over, straight (no barrier) and collision 
into barrier. These data are from experiment J-2010-03-09. Native arm 
control (a) is shown in blue and ReFIT-KF control in red (b).

Figure 5 Illustrations of the online neural  
control paradigm and the ReFIT-KF training  
methodology. (a) The input to the control  
algorithm at time i is a vector of spike counts,  
yt, from implanted electrodes. yt is translated  
into a velocity output, vt to drive the cursor.  
(b) ReFIT-KF is trained in two stages. Initially,  
cursor kinematics and neural activity are  
collected during arm control or during an  
observation phase in which cursor movement is  
automated. These arm movement kinematics or observed  
cursor kinematics are regressed against neural activity to generate an initial control algorithm.  
Then, a new set of cursor kinematics and neural activity are collected using the initial algorithm in a closed loop.  
The kinematics collected during neural control (red vectors) are used to estimate intention by rotating the velocities toward the goal (blue vectors).  
This estimate of intended kinematics is regressed against neural activity to generate and run ReFIT-KF.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.

Trial

S
uc

ce
ss

 ra
te

 (%
) A

cquisition tim
e (s)

200 1,200
0

100

0

6

200 1,200
Trial

0

6

a b

d

Within-manifold perturbation

0 1
Amount of learning

–0.5 0.5 0 1
Amount of learning

–0.5 0.5
0

10

N
um

be
r o

f s
es

si
on

s

Monkey J Monkey L

Relative success rate (%)

R
el

at
iv

e 
ac

qu
is

iti
on

 ti
m

e 
(s

)

–20–40 0

3

0

1

2

c

P < 10–6 P < 10–3

Outside-manifold perturbation

Perturbation

Raw learning
vectors

S
uc

ce
ss

 ra
te

 (%
)

0

100

A
cquisition tim

e (s)

0

6

Perturbation

Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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estimated intended velocities. Second, if the cursor is on target, the 
monkey’s best strategy is to keep the cursor still to satisfy the hold-time 
requirement. Thus, in the training set, we assumed that the monkey’s 
intention during these hold periods was to maintain the cursor position 
by commanding zero velocity. This zero-velocity assumption applied 
to the fitting of model parameters improved online performance with-
out changing the control algorithm (Supplementary Modeling and 
Supplementary Fig. 5). These estimated intentions and corresponding 
neural data were used to fit the ReFIT-KF control algorithm. Note that 
we applied the intention estimation only to training data: during online 
control the neural prosthesis has no knowledge of the task goal or place-
ment of targets (unlike, for example, in refs. 5,23,24).

The aforementioned training protocol used arm-controlled reaches 
as training data. In a paralyzed individual, it is not possible to record 
arm kinematics for this step. Instead, this training step could rely on the 
individual imagining a set of instructed movements. To test this possible 
strategy, we trained the initial algorithm based on visual-cue observa-
tion8,12, removing the requirement for arm control in step one. During 
these trials the monkey watched a computer-controlled training cursor 
that automatically moved to targets. The initial model was fit using auto-
mated training cursor trajectories and simultaneously recorded neural 
activity, without using measured arm movement (Online Methods). 
Table 1 summarizes ReFIT-KF performance for three experimental 
sessions from each monkey in which stage 1 of ReFIT-KF model train-
ing was based on observation data instead of arm movements. The 
performance, as measured by Fitts’s law25 (Supplementary Modeling), 
for these sessions was similar to that attained for the native arm con-
trol–initiated sessions described (Figs. 1 and 2).

Second innovation
The second design innovation builds on the observation that neural 
activity is correlated with both the velocity and the position of the 
cursor. Most existing neural prostheses model a relationship between 
neural activity and either velocity2,4 or position1,10. A clinical trial 
in humans has shown that neural prostheses modeling velocity have 
better performance than those modeling position11,12. However, 
if the control algorithm models only the velocity relationship, then 
position-based changes in firing will confound decoded velocities 
(Supplementary Modeling). To mitigate this effect, we explicitly mod-
eled velocity as the user’s intention and cursor position as an additional 
variable that affects neural output. This modification allows the user 
to control velocity with measured neural signals while accounting for 
the influence of cursor position. We explicitly assumed that the current 
cursor position, determined by integrating the previous velocity out-
put, is encoded in the neural activity along with the monkey’s current 
intended velocity output. Thus, the expected contribution of position 
to neural activity is removed, enabling more accurate estimation of 
intended velocity (Fig. 1 and Supplementary Modeling).

DISCUSSION
Other studies have noted the potential change in plant-and-control 
strategy and have addressed it by iteratively refining parameters dur-
ing experiments with neural prosthetics2,4,6,9,12,20,21. This approach 
recognizes that control strategies, and therefore model parameters, are 
best measured and understood during closed-loop neural prosthetic 
experiments. However, randomizing initial parameters2,4,21 may cre-
ate a control algorithm that never attains the best possible perform-
ance, just as optimization problems can easily become trapped in 
local optima (Supplementary Modeling). Although, if the recorded 
neural population and the neural control mapping are held constant, 
the consequences of the plant mismatch can be overcome through 
learning. Such learning has been demonstrated with neural control 
mappings built to reconstruct arm kinematics, as well as with a neural 
control mapping in which neuron identities have been shuffled, so the 
decoder output was no longer predictive of native arm kinematics7.

The focus of our study was to obtain high control performance in a 
single session by improving the neural control algorithm and optimizing  
its parameters. Although the neural prosthesis constitutes a new plant 
with different properties than the native arm, the motor cortices are 
involved in native arm control (for example, ref. 26). Therefore, we 
hypothesized that initializing a model with the relationship between neu-
ral activity and natural arm movement would allow the second stage of 
our training method to achieve greater optimization. Previous studies4,21 
have relied on manipulating the control task to refine the neural decoder, 
such as by providing assisted control. In those studies, an automated 
correct answer had been mixed with the output of the neural prosthesis. 
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Figure 4 Performance comparison of native arm versus ReFIT-KF for the 
obstacle-avoidance task. (a,b) In this task the monkey had to move the cursor 
from the initial target (labeled 0) to the final target (labeled 1; demand 
box shown as dotted line) without hitting the magenta-colored barrier. One 
representative cursor trace is shown from each of the four principal observed 
movement types: curve under, curve over, straight (no barrier) and collision 
into barrier. These data are from experiment J-2010-03-09. Native arm 
control (a) is shown in blue and ReFIT-KF control in red (b).

Figure 5 Illustrations of the online neural  
control paradigm and the ReFIT-KF training  
methodology. (a) The input to the control  
algorithm at time i is a vector of spike counts,  
yt, from implanted electrodes. yt is translated  
into a velocity output, vt to drive the cursor.  
(b) ReFIT-KF is trained in two stages. Initially,  
cursor kinematics and neural activity are  
collected during arm control or during an  
observation phase in which cursor movement is  
automated. These arm movement kinematics or observed  
cursor kinematics are regressed against neural activity to generate an initial control algorithm.  
Then, a new set of cursor kinematics and neural activity are collected using the initial algorithm in a closed loop.  
The kinematics collected during neural control (red vectors) are used to estimate intention by rotating the velocities toward the goal (blue vectors).  
This estimate of intended kinematics is regressed against neural activity to generate and run ReFIT-KF.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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estimated intended velocities. Second, if the cursor is on target, the 
monkey’s best strategy is to keep the cursor still to satisfy the hold-time 
requirement. Thus, in the training set, we assumed that the monkey’s 
intention during these hold periods was to maintain the cursor position 
by commanding zero velocity. This zero-velocity assumption applied 
to the fitting of model parameters improved online performance with-
out changing the control algorithm (Supplementary Modeling and 
Supplementary Fig. 5). These estimated intentions and corresponding 
neural data were used to fit the ReFIT-KF control algorithm. Note that 
we applied the intention estimation only to training data: during online 
control the neural prosthesis has no knowledge of the task goal or place-
ment of targets (unlike, for example, in refs. 5,23,24).

The aforementioned training protocol used arm-controlled reaches 
as training data. In a paralyzed individual, it is not possible to record 
arm kinematics for this step. Instead, this training step could rely on the 
individual imagining a set of instructed movements. To test this possible 
strategy, we trained the initial algorithm based on visual-cue observa-
tion8,12, removing the requirement for arm control in step one. During 
these trials the monkey watched a computer-controlled training cursor 
that automatically moved to targets. The initial model was fit using auto-
mated training cursor trajectories and simultaneously recorded neural 
activity, without using measured arm movement (Online Methods). 
Table 1 summarizes ReFIT-KF performance for three experimental 
sessions from each monkey in which stage 1 of ReFIT-KF model train-
ing was based on observation data instead of arm movements. The 
performance, as measured by Fitts’s law25 (Supplementary Modeling), 
for these sessions was similar to that attained for the native arm con-
trol–initiated sessions described (Figs. 1 and 2).

Second innovation
The second design innovation builds on the observation that neural 
activity is correlated with both the velocity and the position of the 
cursor. Most existing neural prostheses model a relationship between 
neural activity and either velocity2,4 or position1,10. A clinical trial 
in humans has shown that neural prostheses modeling velocity have 
better performance than those modeling position11,12. However, 
if the control algorithm models only the velocity relationship, then 
position-based changes in firing will confound decoded velocities 
(Supplementary Modeling). To mitigate this effect, we explicitly mod-
eled velocity as the user’s intention and cursor position as an additional 
variable that affects neural output. This modification allows the user 
to control velocity with measured neural signals while accounting for 
the influence of cursor position. We explicitly assumed that the current 
cursor position, determined by integrating the previous velocity out-
put, is encoded in the neural activity along with the monkey’s current 
intended velocity output. Thus, the expected contribution of position 
to neural activity is removed, enabling more accurate estimation of 
intended velocity (Fig. 1 and Supplementary Modeling).

DISCUSSION
Other studies have noted the potential change in plant-and-control 
strategy and have addressed it by iteratively refining parameters dur-
ing experiments with neural prosthetics2,4,6,9,12,20,21. This approach 
recognizes that control strategies, and therefore model parameters, are 
best measured and understood during closed-loop neural prosthetic 
experiments. However, randomizing initial parameters2,4,21 may cre-
ate a control algorithm that never attains the best possible perform-
ance, just as optimization problems can easily become trapped in 
local optima (Supplementary Modeling). Although, if the recorded 
neural population and the neural control mapping are held constant, 
the consequences of the plant mismatch can be overcome through 
learning. Such learning has been demonstrated with neural control 
mappings built to reconstruct arm kinematics, as well as with a neural 
control mapping in which neuron identities have been shuffled, so the 
decoder output was no longer predictive of native arm kinematics7.

The focus of our study was to obtain high control performance in a 
single session by improving the neural control algorithm and optimizing  
its parameters. Although the neural prosthesis constitutes a new plant 
with different properties than the native arm, the motor cortices are 
involved in native arm control (for example, ref. 26). Therefore, we 
hypothesized that initializing a model with the relationship between neu-
ral activity and natural arm movement would allow the second stage of 
our training method to achieve greater optimization. Previous studies4,21 
have relied on manipulating the control task to refine the neural decoder, 
such as by providing assisted control. In those studies, an automated 
correct answer had been mixed with the output of the neural prosthesis. 
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Figure 4 Performance comparison of native arm versus ReFIT-KF for the 
obstacle-avoidance task. (a,b) In this task the monkey had to move the cursor 
from the initial target (labeled 0) to the final target (labeled 1; demand 
box shown as dotted line) without hitting the magenta-colored barrier. One 
representative cursor trace is shown from each of the four principal observed 
movement types: curve under, curve over, straight (no barrier) and collision 
into barrier. These data are from experiment J-2010-03-09. Native arm 
control (a) is shown in blue and ReFIT-KF control in red (b).

Figure 5 Illustrations of the online neural  
control paradigm and the ReFIT-KF training  
methodology. (a) The input to the control  
algorithm at time i is a vector of spike counts,  
yt, from implanted electrodes. yt is translated  
into a velocity output, vt to drive the cursor.  
(b) ReFIT-KF is trained in two stages. Initially,  
cursor kinematics and neural activity are  
collected during arm control or during an  
observation phase in which cursor movement is  
automated. These arm movement kinematics or observed  
cursor kinematics are regressed against neural activity to generate an initial control algorithm.  
Then, a new set of cursor kinematics and neural activity are collected using the initial algorithm in a closed loop.  
The kinematics collected during neural control (red vectors) are used to estimate intention by rotating the velocities toward the goal (blue vectors).  
This estimate of intended kinematics is regressed against neural activity to generate and run ReFIT-KF.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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estimated intended velocities. Second, if the cursor is on target, the 
monkey’s best strategy is to keep the cursor still to satisfy the hold-time 
requirement. Thus, in the training set, we assumed that the monkey’s 
intention during these hold periods was to maintain the cursor position 
by commanding zero velocity. This zero-velocity assumption applied 
to the fitting of model parameters improved online performance with-
out changing the control algorithm (Supplementary Modeling and 
Supplementary Fig. 5). These estimated intentions and corresponding 
neural data were used to fit the ReFIT-KF control algorithm. Note that 
we applied the intention estimation only to training data: during online 
control the neural prosthesis has no knowledge of the task goal or place-
ment of targets (unlike, for example, in refs. 5,23,24).

The aforementioned training protocol used arm-controlled reaches 
as training data. In a paralyzed individual, it is not possible to record 
arm kinematics for this step. Instead, this training step could rely on the 
individual imagining a set of instructed movements. To test this possible 
strategy, we trained the initial algorithm based on visual-cue observa-
tion8,12, removing the requirement for arm control in step one. During 
these trials the monkey watched a computer-controlled training cursor 
that automatically moved to targets. The initial model was fit using auto-
mated training cursor trajectories and simultaneously recorded neural 
activity, without using measured arm movement (Online Methods). 
Table 1 summarizes ReFIT-KF performance for three experimental 
sessions from each monkey in which stage 1 of ReFIT-KF model train-
ing was based on observation data instead of arm movements. The 
performance, as measured by Fitts’s law25 (Supplementary Modeling), 
for these sessions was similar to that attained for the native arm con-
trol–initiated sessions described (Figs. 1 and 2).

Second innovation
The second design innovation builds on the observation that neural 
activity is correlated with both the velocity and the position of the 
cursor. Most existing neural prostheses model a relationship between 
neural activity and either velocity2,4 or position1,10. A clinical trial 
in humans has shown that neural prostheses modeling velocity have 
better performance than those modeling position11,12. However, 
if the control algorithm models only the velocity relationship, then 
position-based changes in firing will confound decoded velocities 
(Supplementary Modeling). To mitigate this effect, we explicitly mod-
eled velocity as the user’s intention and cursor position as an additional 
variable that affects neural output. This modification allows the user 
to control velocity with measured neural signals while accounting for 
the influence of cursor position. We explicitly assumed that the current 
cursor position, determined by integrating the previous velocity out-
put, is encoded in the neural activity along with the monkey’s current 
intended velocity output. Thus, the expected contribution of position 
to neural activity is removed, enabling more accurate estimation of 
intended velocity (Fig. 1 and Supplementary Modeling).

DISCUSSION
Other studies have noted the potential change in plant-and-control 
strategy and have addressed it by iteratively refining parameters dur-
ing experiments with neural prosthetics2,4,6,9,12,20,21. This approach 
recognizes that control strategies, and therefore model parameters, are 
best measured and understood during closed-loop neural prosthetic 
experiments. However, randomizing initial parameters2,4,21 may cre-
ate a control algorithm that never attains the best possible perform-
ance, just as optimization problems can easily become trapped in 
local optima (Supplementary Modeling). Although, if the recorded 
neural population and the neural control mapping are held constant, 
the consequences of the plant mismatch can be overcome through 
learning. Such learning has been demonstrated with neural control 
mappings built to reconstruct arm kinematics, as well as with a neural 
control mapping in which neuron identities have been shuffled, so the 
decoder output was no longer predictive of native arm kinematics7.

The focus of our study was to obtain high control performance in a 
single session by improving the neural control algorithm and optimizing  
its parameters. Although the neural prosthesis constitutes a new plant 
with different properties than the native arm, the motor cortices are 
involved in native arm control (for example, ref. 26). Therefore, we 
hypothesized that initializing a model with the relationship between neu-
ral activity and natural arm movement would allow the second stage of 
our training method to achieve greater optimization. Previous studies4,21 
have relied on manipulating the control task to refine the neural decoder, 
such as by providing assisted control. In those studies, an automated 
correct answer had been mixed with the output of the neural prosthesis. 
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Figure 4 Performance comparison of native arm versus ReFIT-KF for the 
obstacle-avoidance task. (a,b) In this task the monkey had to move the cursor 
from the initial target (labeled 0) to the final target (labeled 1; demand 
box shown as dotted line) without hitting the magenta-colored barrier. One 
representative cursor trace is shown from each of the four principal observed 
movement types: curve under, curve over, straight (no barrier) and collision 
into barrier. These data are from experiment J-2010-03-09. Native arm 
control (a) is shown in blue and ReFIT-KF control in red (b).

Figure 5 Illustrations of the online neural  
control paradigm and the ReFIT-KF training  
methodology. (a) The input to the control  
algorithm at time i is a vector of spike counts,  
yt, from implanted electrodes. yt is translated  
into a velocity output, vt to drive the cursor.  
(b) ReFIT-KF is trained in two stages. Initially,  
cursor kinematics and neural activity are  
collected during arm control or during an  
observation phase in which cursor movement is  
automated. These arm movement kinematics or observed  
cursor kinematics are regressed against neural activity to generate an initial control algorithm.  
Then, a new set of cursor kinematics and neural activity are collected using the initial algorithm in a closed loop.  
The kinematics collected during neural control (red vectors) are used to estimate intention by rotating the velocities toward the goal (blue vectors).  
This estimate of intended kinematics is regressed against neural activity to generate and run ReFIT-KF.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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BMI Learning

of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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estimated intended velocities. Second, if the cursor is on target, the 
monkey’s best strategy is to keep the cursor still to satisfy the hold-time 
requirement. Thus, in the training set, we assumed that the monkey’s 
intention during these hold periods was to maintain the cursor position 
by commanding zero velocity. This zero-velocity assumption applied 
to the fitting of model parameters improved online performance with-
out changing the control algorithm (Supplementary Modeling and 
Supplementary Fig. 5). These estimated intentions and corresponding 
neural data were used to fit the ReFIT-KF control algorithm. Note that 
we applied the intention estimation only to training data: during online 
control the neural prosthesis has no knowledge of the task goal or place-
ment of targets (unlike, for example, in refs. 5,23,24).

The aforementioned training protocol used arm-controlled reaches 
as training data. In a paralyzed individual, it is not possible to record 
arm kinematics for this step. Instead, this training step could rely on the 
individual imagining a set of instructed movements. To test this possible 
strategy, we trained the initial algorithm based on visual-cue observa-
tion8,12, removing the requirement for arm control in step one. During 
these trials the monkey watched a computer-controlled training cursor 
that automatically moved to targets. The initial model was fit using auto-
mated training cursor trajectories and simultaneously recorded neural 
activity, without using measured arm movement (Online Methods). 
Table 1 summarizes ReFIT-KF performance for three experimental 
sessions from each monkey in which stage 1 of ReFIT-KF model train-
ing was based on observation data instead of arm movements. The 
performance, as measured by Fitts’s law25 (Supplementary Modeling), 
for these sessions was similar to that attained for the native arm con-
trol–initiated sessions described (Figs. 1 and 2).

Second innovation
The second design innovation builds on the observation that neural 
activity is correlated with both the velocity and the position of the 
cursor. Most existing neural prostheses model a relationship between 
neural activity and either velocity2,4 or position1,10. A clinical trial 
in humans has shown that neural prostheses modeling velocity have 
better performance than those modeling position11,12. However, 
if the control algorithm models only the velocity relationship, then 
position-based changes in firing will confound decoded velocities 
(Supplementary Modeling). To mitigate this effect, we explicitly mod-
eled velocity as the user’s intention and cursor position as an additional 
variable that affects neural output. This modification allows the user 
to control velocity with measured neural signals while accounting for 
the influence of cursor position. We explicitly assumed that the current 
cursor position, determined by integrating the previous velocity out-
put, is encoded in the neural activity along with the monkey’s current 
intended velocity output. Thus, the expected contribution of position 
to neural activity is removed, enabling more accurate estimation of 
intended velocity (Fig. 1 and Supplementary Modeling).

DISCUSSION
Other studies have noted the potential change in plant-and-control 
strategy and have addressed it by iteratively refining parameters dur-
ing experiments with neural prosthetics2,4,6,9,12,20,21. This approach 
recognizes that control strategies, and therefore model parameters, are 
best measured and understood during closed-loop neural prosthetic 
experiments. However, randomizing initial parameters2,4,21 may cre-
ate a control algorithm that never attains the best possible perform-
ance, just as optimization problems can easily become trapped in 
local optima (Supplementary Modeling). Although, if the recorded 
neural population and the neural control mapping are held constant, 
the consequences of the plant mismatch can be overcome through 
learning. Such learning has been demonstrated with neural control 
mappings built to reconstruct arm kinematics, as well as with a neural 
control mapping in which neuron identities have been shuffled, so the 
decoder output was no longer predictive of native arm kinematics7.

The focus of our study was to obtain high control performance in a 
single session by improving the neural control algorithm and optimizing  
its parameters. Although the neural prosthesis constitutes a new plant 
with different properties than the native arm, the motor cortices are 
involved in native arm control (for example, ref. 26). Therefore, we 
hypothesized that initializing a model with the relationship between neu-
ral activity and natural arm movement would allow the second stage of 
our training method to achieve greater optimization. Previous studies4,21 
have relied on manipulating the control task to refine the neural decoder, 
such as by providing assisted control. In those studies, an automated 
correct answer had been mixed with the output of the neural prosthesis. 
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Figure 4 Performance comparison of native arm versus ReFIT-KF for the 
obstacle-avoidance task. (a,b) In this task the monkey had to move the cursor 
from the initial target (labeled 0) to the final target (labeled 1; demand 
box shown as dotted line) without hitting the magenta-colored barrier. One 
representative cursor trace is shown from each of the four principal observed 
movement types: curve under, curve over, straight (no barrier) and collision 
into barrier. These data are from experiment J-2010-03-09. Native arm 
control (a) is shown in blue and ReFIT-KF control in red (b).

Figure 5 Illustrations of the online neural  
control paradigm and the ReFIT-KF training  
methodology. (a) The input to the control  
algorithm at time i is a vector of spike counts,  
yt, from implanted electrodes. yt is translated  
into a velocity output, vt to drive the cursor.  
(b) ReFIT-KF is trained in two stages. Initially,  
cursor kinematics and neural activity are  
collected during arm control or during an  
observation phase in which cursor movement is  
automated. These arm movement kinematics or observed  
cursor kinematics are regressed against neural activity to generate an initial control algorithm.  
Then, a new set of cursor kinematics and neural activity are collected using the initial algorithm in a closed loop.  
The kinematics collected during neural control (red vectors) are used to estimate intention by rotating the velocities toward the goal (blue vectors).  
This estimate of intended kinematics is regressed against neural activity to generate and run ReFIT-KF.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
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prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
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estimated intended velocities. Second, if the cursor is on target, the 
monkey’s best strategy is to keep the cursor still to satisfy the hold-time 
requirement. Thus, in the training set, we assumed that the monkey’s 
intention during these hold periods was to maintain the cursor position 
by commanding zero velocity. This zero-velocity assumption applied 
to the fitting of model parameters improved online performance with-
out changing the control algorithm (Supplementary Modeling and 
Supplementary Fig. 5). These estimated intentions and corresponding 
neural data were used to fit the ReFIT-KF control algorithm. Note that 
we applied the intention estimation only to training data: during online 
control the neural prosthesis has no knowledge of the task goal or place-
ment of targets (unlike, for example, in refs. 5,23,24).

The aforementioned training protocol used arm-controlled reaches 
as training data. In a paralyzed individual, it is not possible to record 
arm kinematics for this step. Instead, this training step could rely on the 
individual imagining a set of instructed movements. To test this possible 
strategy, we trained the initial algorithm based on visual-cue observa-
tion8,12, removing the requirement for arm control in step one. During 
these trials the monkey watched a computer-controlled training cursor 
that automatically moved to targets. The initial model was fit using auto-
mated training cursor trajectories and simultaneously recorded neural 
activity, without using measured arm movement (Online Methods). 
Table 1 summarizes ReFIT-KF performance for three experimental 
sessions from each monkey in which stage 1 of ReFIT-KF model train-
ing was based on observation data instead of arm movements. The 
performance, as measured by Fitts’s law25 (Supplementary Modeling), 
for these sessions was similar to that attained for the native arm con-
trol–initiated sessions described (Figs. 1 and 2).

Second innovation
The second design innovation builds on the observation that neural 
activity is correlated with both the velocity and the position of the 
cursor. Most existing neural prostheses model a relationship between 
neural activity and either velocity2,4 or position1,10. A clinical trial 
in humans has shown that neural prostheses modeling velocity have 
better performance than those modeling position11,12. However, 
if the control algorithm models only the velocity relationship, then 
position-based changes in firing will confound decoded velocities 
(Supplementary Modeling). To mitigate this effect, we explicitly mod-
eled velocity as the user’s intention and cursor position as an additional 
variable that affects neural output. This modification allows the user 
to control velocity with measured neural signals while accounting for 
the influence of cursor position. We explicitly assumed that the current 
cursor position, determined by integrating the previous velocity out-
put, is encoded in the neural activity along with the monkey’s current 
intended velocity output. Thus, the expected contribution of position 
to neural activity is removed, enabling more accurate estimation of 
intended velocity (Fig. 1 and Supplementary Modeling).

DISCUSSION
Other studies have noted the potential change in plant-and-control 
strategy and have addressed it by iteratively refining parameters dur-
ing experiments with neural prosthetics2,4,6,9,12,20,21. This approach 
recognizes that control strategies, and therefore model parameters, are 
best measured and understood during closed-loop neural prosthetic 
experiments. However, randomizing initial parameters2,4,21 may cre-
ate a control algorithm that never attains the best possible perform-
ance, just as optimization problems can easily become trapped in 
local optima (Supplementary Modeling). Although, if the recorded 
neural population and the neural control mapping are held constant, 
the consequences of the plant mismatch can be overcome through 
learning. Such learning has been demonstrated with neural control 
mappings built to reconstruct arm kinematics, as well as with a neural 
control mapping in which neuron identities have been shuffled, so the 
decoder output was no longer predictive of native arm kinematics7.

The focus of our study was to obtain high control performance in a 
single session by improving the neural control algorithm and optimizing  
its parameters. Although the neural prosthesis constitutes a new plant 
with different properties than the native arm, the motor cortices are 
involved in native arm control (for example, ref. 26). Therefore, we 
hypothesized that initializing a model with the relationship between neu-
ral activity and natural arm movement would allow the second stage of 
our training method to achieve greater optimization. Previous studies4,21 
have relied on manipulating the control task to refine the neural decoder, 
such as by providing assisted control. In those studies, an automated 
correct answer had been mixed with the output of the neural prosthesis. 

5 cm

1

0

01

010 1

01

ReFIT-KFNative arma b
0

011

01

Figure 4 Performance comparison of native arm versus ReFIT-KF for the 
obstacle-avoidance task. (a,b) In this task the monkey had to move the cursor 
from the initial target (labeled 0) to the final target (labeled 1; demand 
box shown as dotted line) without hitting the magenta-colored barrier. One 
representative cursor trace is shown from each of the four principal observed 
movement types: curve under, curve over, straight (no barrier) and collision 
into barrier. These data are from experiment J-2010-03-09. Native arm 
control (a) is shown in blue and ReFIT-KF control in red (b).

Figure 5 Illustrations of the online neural  
control paradigm and the ReFIT-KF training  
methodology. (a) The input to the control  
algorithm at time i is a vector of spike counts,  
yt, from implanted electrodes. yt is translated  
into a velocity output, vt to drive the cursor.  
(b) ReFIT-KF is trained in two stages. Initially,  
cursor kinematics and neural activity are  
collected during arm control or during an  
observation phase in which cursor movement is  
automated. These arm movement kinematics or observed  
cursor kinematics are regressed against neural activity to generate an initial control algorithm.  
Then, a new set of cursor kinematics and neural activity are collected using the initial algorithm in a closed loop.  
The kinematics collected during neural control (red vectors) are used to estimate intention by rotating the velocities toward the goal (blue vectors).  
This estimate of intended kinematics is regressed against neural activity to generate and run ReFIT-KF.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
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estimated intended velocities. Second, if the cursor is on target, the 
monkey’s best strategy is to keep the cursor still to satisfy the hold-time 
requirement. Thus, in the training set, we assumed that the monkey’s 
intention during these hold periods was to maintain the cursor position 
by commanding zero velocity. This zero-velocity assumption applied 
to the fitting of model parameters improved online performance with-
out changing the control algorithm (Supplementary Modeling and 
Supplementary Fig. 5). These estimated intentions and corresponding 
neural data were used to fit the ReFIT-KF control algorithm. Note that 
we applied the intention estimation only to training data: during online 
control the neural prosthesis has no knowledge of the task goal or place-
ment of targets (unlike, for example, in refs. 5,23,24).

The aforementioned training protocol used arm-controlled reaches 
as training data. In a paralyzed individual, it is not possible to record 
arm kinematics for this step. Instead, this training step could rely on the 
individual imagining a set of instructed movements. To test this possible 
strategy, we trained the initial algorithm based on visual-cue observa-
tion8,12, removing the requirement for arm control in step one. During 
these trials the monkey watched a computer-controlled training cursor 
that automatically moved to targets. The initial model was fit using auto-
mated training cursor trajectories and simultaneously recorded neural 
activity, without using measured arm movement (Online Methods). 
Table 1 summarizes ReFIT-KF performance for three experimental 
sessions from each monkey in which stage 1 of ReFIT-KF model train-
ing was based on observation data instead of arm movements. The 
performance, as measured by Fitts’s law25 (Supplementary Modeling), 
for these sessions was similar to that attained for the native arm con-
trol–initiated sessions described (Figs. 1 and 2).

Second innovation
The second design innovation builds on the observation that neural 
activity is correlated with both the velocity and the position of the 
cursor. Most existing neural prostheses model a relationship between 
neural activity and either velocity2,4 or position1,10. A clinical trial 
in humans has shown that neural prostheses modeling velocity have 
better performance than those modeling position11,12. However, 
if the control algorithm models only the velocity relationship, then 
position-based changes in firing will confound decoded velocities 
(Supplementary Modeling). To mitigate this effect, we explicitly mod-
eled velocity as the user’s intention and cursor position as an additional 
variable that affects neural output. This modification allows the user 
to control velocity with measured neural signals while accounting for 
the influence of cursor position. We explicitly assumed that the current 
cursor position, determined by integrating the previous velocity out-
put, is encoded in the neural activity along with the monkey’s current 
intended velocity output. Thus, the expected contribution of position 
to neural activity is removed, enabling more accurate estimation of 
intended velocity (Fig. 1 and Supplementary Modeling).

DISCUSSION
Other studies have noted the potential change in plant-and-control 
strategy and have addressed it by iteratively refining parameters dur-
ing experiments with neural prosthetics2,4,6,9,12,20,21. This approach 
recognizes that control strategies, and therefore model parameters, are 
best measured and understood during closed-loop neural prosthetic 
experiments. However, randomizing initial parameters2,4,21 may cre-
ate a control algorithm that never attains the best possible perform-
ance, just as optimization problems can easily become trapped in 
local optima (Supplementary Modeling). Although, if the recorded 
neural population and the neural control mapping are held constant, 
the consequences of the plant mismatch can be overcome through 
learning. Such learning has been demonstrated with neural control 
mappings built to reconstruct arm kinematics, as well as with a neural 
control mapping in which neuron identities have been shuffled, so the 
decoder output was no longer predictive of native arm kinematics7.

The focus of our study was to obtain high control performance in a 
single session by improving the neural control algorithm and optimizing  
its parameters. Although the neural prosthesis constitutes a new plant 
with different properties than the native arm, the motor cortices are 
involved in native arm control (for example, ref. 26). Therefore, we 
hypothesized that initializing a model with the relationship between neu-
ral activity and natural arm movement would allow the second stage of 
our training method to achieve greater optimization. Previous studies4,21 
have relied on manipulating the control task to refine the neural decoder, 
such as by providing assisted control. In those studies, an automated 
correct answer had been mixed with the output of the neural prosthesis. 
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Figure 4 Performance comparison of native arm versus ReFIT-KF for the 
obstacle-avoidance task. (a,b) In this task the monkey had to move the cursor 
from the initial target (labeled 0) to the final target (labeled 1; demand 
box shown as dotted line) without hitting the magenta-colored barrier. One 
representative cursor trace is shown from each of the four principal observed 
movement types: curve under, curve over, straight (no barrier) and collision 
into barrier. These data are from experiment J-2010-03-09. Native arm 
control (a) is shown in blue and ReFIT-KF control in red (b).

Figure 5 Illustrations of the online neural  
control paradigm and the ReFIT-KF training  
methodology. (a) The input to the control  
algorithm at time i is a vector of spike counts,  
yt, from implanted electrodes. yt is translated  
into a velocity output, vt to drive the cursor.  
(b) ReFIT-KF is trained in two stages. Initially,  
cursor kinematics and neural activity are  
collected during arm control or during an  
observation phase in which cursor movement is  
automated. These arm movement kinematics or observed  
cursor kinematics are regressed against neural activity to generate an initial control algorithm.  
Then, a new set of cursor kinematics and neural activity are collected using the initial algorithm in a closed loop.  
The kinematics collected during neural control (red vectors) are used to estimate intention by rotating the velocities toward the goal (blue vectors).  
This estimate of intended kinematics is regressed against neural activity to generate and run ReFIT-KF.
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BMI Learning

of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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estimated intended velocities. Second, if the cursor is on target, the 
monkey’s best strategy is to keep the cursor still to satisfy the hold-time 
requirement. Thus, in the training set, we assumed that the monkey’s 
intention during these hold periods was to maintain the cursor position 
by commanding zero velocity. This zero-velocity assumption applied 
to the fitting of model parameters improved online performance with-
out changing the control algorithm (Supplementary Modeling and 
Supplementary Fig. 5). These estimated intentions and corresponding 
neural data were used to fit the ReFIT-KF control algorithm. Note that 
we applied the intention estimation only to training data: during online 
control the neural prosthesis has no knowledge of the task goal or place-
ment of targets (unlike, for example, in refs. 5,23,24).

The aforementioned training protocol used arm-controlled reaches 
as training data. In a paralyzed individual, it is not possible to record 
arm kinematics for this step. Instead, this training step could rely on the 
individual imagining a set of instructed movements. To test this possible 
strategy, we trained the initial algorithm based on visual-cue observa-
tion8,12, removing the requirement for arm control in step one. During 
these trials the monkey watched a computer-controlled training cursor 
that automatically moved to targets. The initial model was fit using auto-
mated training cursor trajectories and simultaneously recorded neural 
activity, without using measured arm movement (Online Methods). 
Table 1 summarizes ReFIT-KF performance for three experimental 
sessions from each monkey in which stage 1 of ReFIT-KF model train-
ing was based on observation data instead of arm movements. The 
performance, as measured by Fitts’s law25 (Supplementary Modeling), 
for these sessions was similar to that attained for the native arm con-
trol–initiated sessions described (Figs. 1 and 2).

Second innovation
The second design innovation builds on the observation that neural 
activity is correlated with both the velocity and the position of the 
cursor. Most existing neural prostheses model a relationship between 
neural activity and either velocity2,4 or position1,10. A clinical trial 
in humans has shown that neural prostheses modeling velocity have 
better performance than those modeling position11,12. However, 
if the control algorithm models only the velocity relationship, then 
position-based changes in firing will confound decoded velocities 
(Supplementary Modeling). To mitigate this effect, we explicitly mod-
eled velocity as the user’s intention and cursor position as an additional 
variable that affects neural output. This modification allows the user 
to control velocity with measured neural signals while accounting for 
the influence of cursor position. We explicitly assumed that the current 
cursor position, determined by integrating the previous velocity out-
put, is encoded in the neural activity along with the monkey’s current 
intended velocity output. Thus, the expected contribution of position 
to neural activity is removed, enabling more accurate estimation of 
intended velocity (Fig. 1 and Supplementary Modeling).

DISCUSSION
Other studies have noted the potential change in plant-and-control 
strategy and have addressed it by iteratively refining parameters dur-
ing experiments with neural prosthetics2,4,6,9,12,20,21. This approach 
recognizes that control strategies, and therefore model parameters, are 
best measured and understood during closed-loop neural prosthetic 
experiments. However, randomizing initial parameters2,4,21 may cre-
ate a control algorithm that never attains the best possible perform-
ance, just as optimization problems can easily become trapped in 
local optima (Supplementary Modeling). Although, if the recorded 
neural population and the neural control mapping are held constant, 
the consequences of the plant mismatch can be overcome through 
learning. Such learning has been demonstrated with neural control 
mappings built to reconstruct arm kinematics, as well as with a neural 
control mapping in which neuron identities have been shuffled, so the 
decoder output was no longer predictive of native arm kinematics7.

The focus of our study was to obtain high control performance in a 
single session by improving the neural control algorithm and optimizing  
its parameters. Although the neural prosthesis constitutes a new plant 
with different properties than the native arm, the motor cortices are 
involved in native arm control (for example, ref. 26). Therefore, we 
hypothesized that initializing a model with the relationship between neu-
ral activity and natural arm movement would allow the second stage of 
our training method to achieve greater optimization. Previous studies4,21 
have relied on manipulating the control task to refine the neural decoder, 
such as by providing assisted control. In those studies, an automated 
correct answer had been mixed with the output of the neural prosthesis. 
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Figure 4 Performance comparison of native arm versus ReFIT-KF for the 
obstacle-avoidance task. (a,b) In this task the monkey had to move the cursor 
from the initial target (labeled 0) to the final target (labeled 1; demand 
box shown as dotted line) without hitting the magenta-colored barrier. One 
representative cursor trace is shown from each of the four principal observed 
movement types: curve under, curve over, straight (no barrier) and collision 
into barrier. These data are from experiment J-2010-03-09. Native arm 
control (a) is shown in blue and ReFIT-KF control in red (b).

Figure 5 Illustrations of the online neural  
control paradigm and the ReFIT-KF training  
methodology. (a) The input to the control  
algorithm at time i is a vector of spike counts,  
yt, from implanted electrodes. yt is translated  
into a velocity output, vt to drive the cursor.  
(b) ReFIT-KF is trained in two stages. Initially,  
cursor kinematics and neural activity are  
collected during arm control or during an  
observation phase in which cursor movement is  
automated. These arm movement kinematics or observed  
cursor kinematics are regressed against neural activity to generate an initial control algorithm.  
Then, a new set of cursor kinematics and neural activity are collected using the initial algorithm in a closed loop.  
The kinematics collected during neural control (red vectors) are used to estimate intention by rotating the velocities toward the goal (blue vectors).  
This estimate of intended kinematics is regressed against neural activity to generate and run ReFIT-KF.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.

RESEARCH LETTER

4 2 4 | N A T U R E | V O L 5 1 2 | 2 8 A U G U S T 2 0 1 4

Macmillan Publishers Limited. All rights reserved©2014

Sadtler et al. (2014)

vx
vy

local

M1 circuitu
p

s
t
r
e
a
m

in
p

u
t
s

BMI

readout

.

Observations:

⇤ fast
⇤ gradients
⇤ flexible

.

Re-wiring:

◊ O (N 2) parameters
◊ ∆ slow
◊ forgetful

.

Re-aiming:

X low-dimensional
X ∆ fast
?

Modelling re-aiming
Linear BMI decoder:

v(t) = Dr(t) + b
Standard RNN dynamics:
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estimated intended velocities. Second, if the cursor is on target, the 
monkey’s best strategy is to keep the cursor still to satisfy the hold-time 
requirement. Thus, in the training set, we assumed that the monkey’s 
intention during these hold periods was to maintain the cursor position 
by commanding zero velocity. This zero-velocity assumption applied 
to the fitting of model parameters improved online performance with-
out changing the control algorithm (Supplementary Modeling and 
Supplementary Fig. 5). These estimated intentions and corresponding 
neural data were used to fit the ReFIT-KF control algorithm. Note that 
we applied the intention estimation only to training data: during online 
control the neural prosthesis has no knowledge of the task goal or place-
ment of targets (unlike, for example, in refs. 5,23,24).

The aforementioned training protocol used arm-controlled reaches 
as training data. In a paralyzed individual, it is not possible to record 
arm kinematics for this step. Instead, this training step could rely on the 
individual imagining a set of instructed movements. To test this possible 
strategy, we trained the initial algorithm based on visual-cue observa-
tion8,12, removing the requirement for arm control in step one. During 
these trials the monkey watched a computer-controlled training cursor 
that automatically moved to targets. The initial model was fit using auto-
mated training cursor trajectories and simultaneously recorded neural 
activity, without using measured arm movement (Online Methods). 
Table 1 summarizes ReFIT-KF performance for three experimental 
sessions from each monkey in which stage 1 of ReFIT-KF model train-
ing was based on observation data instead of arm movements. The 
performance, as measured by Fitts’s law25 (Supplementary Modeling), 
for these sessions was similar to that attained for the native arm con-
trol–initiated sessions described (Figs. 1 and 2).

Second innovation
The second design innovation builds on the observation that neural 
activity is correlated with both the velocity and the position of the 
cursor. Most existing neural prostheses model a relationship between 
neural activity and either velocity2,4 or position1,10. A clinical trial 
in humans has shown that neural prostheses modeling velocity have 
better performance than those modeling position11,12. However, 
if the control algorithm models only the velocity relationship, then 
position-based changes in firing will confound decoded velocities 
(Supplementary Modeling). To mitigate this effect, we explicitly mod-
eled velocity as the user’s intention and cursor position as an additional 
variable that affects neural output. This modification allows the user 
to control velocity with measured neural signals while accounting for 
the influence of cursor position. We explicitly assumed that the current 
cursor position, determined by integrating the previous velocity out-
put, is encoded in the neural activity along with the monkey’s current 
intended velocity output. Thus, the expected contribution of position 
to neural activity is removed, enabling more accurate estimation of 
intended velocity (Fig. 1 and Supplementary Modeling).

DISCUSSION
Other studies have noted the potential change in plant-and-control 
strategy and have addressed it by iteratively refining parameters dur-
ing experiments with neural prosthetics2,4,6,9,12,20,21. This approach 
recognizes that control strategies, and therefore model parameters, are 
best measured and understood during closed-loop neural prosthetic 
experiments. However, randomizing initial parameters2,4,21 may cre-
ate a control algorithm that never attains the best possible perform-
ance, just as optimization problems can easily become trapped in 
local optima (Supplementary Modeling). Although, if the recorded 
neural population and the neural control mapping are held constant, 
the consequences of the plant mismatch can be overcome through 
learning. Such learning has been demonstrated with neural control 
mappings built to reconstruct arm kinematics, as well as with a neural 
control mapping in which neuron identities have been shuffled, so the 
decoder output was no longer predictive of native arm kinematics7.

The focus of our study was to obtain high control performance in a 
single session by improving the neural control algorithm and optimizing  
its parameters. Although the neural prosthesis constitutes a new plant 
with different properties than the native arm, the motor cortices are 
involved in native arm control (for example, ref. 26). Therefore, we 
hypothesized that initializing a model with the relationship between neu-
ral activity and natural arm movement would allow the second stage of 
our training method to achieve greater optimization. Previous studies4,21 
have relied on manipulating the control task to refine the neural decoder, 
such as by providing assisted control. In those studies, an automated 
correct answer had been mixed with the output of the neural prosthesis. 
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Figure 4 Performance comparison of native arm versus ReFIT-KF for the 
obstacle-avoidance task. (a,b) In this task the monkey had to move the cursor 
from the initial target (labeled 0) to the final target (labeled 1; demand 
box shown as dotted line) without hitting the magenta-colored barrier. One 
representative cursor trace is shown from each of the four principal observed 
movement types: curve under, curve over, straight (no barrier) and collision 
into barrier. These data are from experiment J-2010-03-09. Native arm 
control (a) is shown in blue and ReFIT-KF control in red (b).

Figure 5 Illustrations of the online neural  
control paradigm and the ReFIT-KF training  
methodology. (a) The input to the control  
algorithm at time i is a vector of spike counts,  
yt, from implanted electrodes. yt is translated  
into a velocity output, vt to drive the cursor.  
(b) ReFIT-KF is trained in two stages. Initially,  
cursor kinematics and neural activity are  
collected during arm control or during an  
observation phase in which cursor movement is  
automated. These arm movement kinematics or observed  
cursor kinematics are regressed against neural activity to generate an initial control algorithm.  
Then, a new set of cursor kinematics and neural activity are collected using the initial algorithm in a closed loop.  
The kinematics collected during neural control (red vectors) are used to estimate intention by rotating the velocities toward the goal (blue vectors).  
This estimate of intended kinematics is regressed against neural activity to generate and run ReFIT-KF.
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
representative within-manifold perturbation session (a) and one representative
outside-manifold perturbation session (b). Black trace, success rate; green
trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
(success rate and acquisition time are relative to performance with intuitive
mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
amount of learning for each session is the length of the raw learning vector
projected onto the maximum learning vector, normalized by the length of the
maximum learning vector. This is the ratio of the length of the thin red line
to the length of the dashed line. d, Amount of learning for all sessions. A value of
1 indicates complete learning of the relationship between neural activity and
kinematics, and 0 indicates no learning. Learning is significantly better for
within-manifold perturbations (red, n 5 28 (monkey J), 14 (monkey L)) than
for outside-manifold perturbations (blue, n 5 39 (monkey J), 15 (monkey L)).
Arrows indicate the sessions shown in Fig. 2a (red) and Fig. 2b (blue). Dashed
lines, means of distributions; solid lines, mean 6 standard error of the mean
(s.e.m.). P values were obtained from two-tailed Student’s t-tests.
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estimated intended velocities. Second, if the cursor is on target, the 
monkey’s best strategy is to keep the cursor still to satisfy the hold-time 
requirement. Thus, in the training set, we assumed that the monkey’s 
intention during these hold periods was to maintain the cursor position 
by commanding zero velocity. This zero-velocity assumption applied 
to the fitting of model parameters improved online performance with-
out changing the control algorithm (Supplementary Modeling and 
Supplementary Fig. 5). These estimated intentions and corresponding 
neural data were used to fit the ReFIT-KF control algorithm. Note that 
we applied the intention estimation only to training data: during online 
control the neural prosthesis has no knowledge of the task goal or place-
ment of targets (unlike, for example, in refs. 5,23,24).

The aforementioned training protocol used arm-controlled reaches 
as training data. In a paralyzed individual, it is not possible to record 
arm kinematics for this step. Instead, this training step could rely on the 
individual imagining a set of instructed movements. To test this possible 
strategy, we trained the initial algorithm based on visual-cue observa-
tion8,12, removing the requirement for arm control in step one. During 
these trials the monkey watched a computer-controlled training cursor 
that automatically moved to targets. The initial model was fit using auto-
mated training cursor trajectories and simultaneously recorded neural 
activity, without using measured arm movement (Online Methods). 
Table 1 summarizes ReFIT-KF performance for three experimental 
sessions from each monkey in which stage 1 of ReFIT-KF model train-
ing was based on observation data instead of arm movements. The 
performance, as measured by Fitts’s law25 (Supplementary Modeling), 
for these sessions was similar to that attained for the native arm con-
trol–initiated sessions described (Figs. 1 and 2).

Second innovation
The second design innovation builds on the observation that neural 
activity is correlated with both the velocity and the position of the 
cursor. Most existing neural prostheses model a relationship between 
neural activity and either velocity2,4 or position1,10. A clinical trial 
in humans has shown that neural prostheses modeling velocity have 
better performance than those modeling position11,12. However, 
if the control algorithm models only the velocity relationship, then 
position-based changes in firing will confound decoded velocities 
(Supplementary Modeling). To mitigate this effect, we explicitly mod-
eled velocity as the user’s intention and cursor position as an additional 
variable that affects neural output. This modification allows the user 
to control velocity with measured neural signals while accounting for 
the influence of cursor position. We explicitly assumed that the current 
cursor position, determined by integrating the previous velocity out-
put, is encoded in the neural activity along with the monkey’s current 
intended velocity output. Thus, the expected contribution of position 
to neural activity is removed, enabling more accurate estimation of 
intended velocity (Fig. 1 and Supplementary Modeling).

DISCUSSION
Other studies have noted the potential change in plant-and-control 
strategy and have addressed it by iteratively refining parameters dur-
ing experiments with neural prosthetics2,4,6,9,12,20,21. This approach 
recognizes that control strategies, and therefore model parameters, are 
best measured and understood during closed-loop neural prosthetic 
experiments. However, randomizing initial parameters2,4,21 may cre-
ate a control algorithm that never attains the best possible perform-
ance, just as optimization problems can easily become trapped in 
local optima (Supplementary Modeling). Although, if the recorded 
neural population and the neural control mapping are held constant, 
the consequences of the plant mismatch can be overcome through 
learning. Such learning has been demonstrated with neural control 
mappings built to reconstruct arm kinematics, as well as with a neural 
control mapping in which neuron identities have been shuffled, so the 
decoder output was no longer predictive of native arm kinematics7.

The focus of our study was to obtain high control performance in a 
single session by improving the neural control algorithm and optimizing  
its parameters. Although the neural prosthesis constitutes a new plant 
with different properties than the native arm, the motor cortices are 
involved in native arm control (for example, ref. 26). Therefore, we 
hypothesized that initializing a model with the relationship between neu-
ral activity and natural arm movement would allow the second stage of 
our training method to achieve greater optimization. Previous studies4,21 
have relied on manipulating the control task to refine the neural decoder, 
such as by providing assisted control. In those studies, an automated 
correct answer had been mixed with the output of the neural prosthesis. 

5 cm

1

0

01

010 1

01

ReFIT-KFNative arma b
0

011

01

Figure 4 Performance comparison of native arm versus ReFIT-KF for the 
obstacle-avoidance task. (a,b) In this task the monkey had to move the cursor 
from the initial target (labeled 0) to the final target (labeled 1; demand 
box shown as dotted line) without hitting the magenta-colored barrier. One 
representative cursor trace is shown from each of the four principal observed 
movement types: curve under, curve over, straight (no barrier) and collision 
into barrier. These data are from experiment J-2010-03-09. Native arm 
control (a) is shown in blue and ReFIT-KF control in red (b).

Figure 5 Illustrations of the online neural  
control paradigm and the ReFIT-KF training  
methodology. (a) The input to the control  
algorithm at time i is a vector of spike counts,  
yt, from implanted electrodes. yt is translated  
into a velocity output, vt to drive the cursor.  
(b) ReFIT-KF is trained in two stages. Initially,  
cursor kinematics and neural activity are  
collected during arm control or during an  
observation phase in which cursor movement is  
automated. These arm movement kinematics or observed  
cursor kinematics are regressed against neural activity to generate an initial control algorithm.  
Then, a new set of cursor kinematics and neural activity are collected using the initial algorithm in a closed loop.  
The kinematics collected during neural control (red vectors) are used to estimate intention by rotating the velocities toward the goal (blue vectors).  
This estimate of intended kinematics is regressed against neural activity to generate and run ReFIT-KF.

calibration task

Gilja et al. (2012)

baseline decoder D within-manifold

perturbation

DWM

outside-manifold

perturbation

DOM

{

low-D inputs!!

Fast learning by re-aiming
.

Linear Network

DWM DOM

= smallest si
2

.

ReLU Network

SUMMARY
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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then from the intrinsic manifold to cursor kinematics using a Kalman filter.
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estimated intended velocities. Second, if the cursor is on target, the 
monkey’s best strategy is to keep the cursor still to satisfy the hold-time 
requirement. Thus, in the training set, we assumed that the monkey’s 
intention during these hold periods was to maintain the cursor position 
by commanding zero velocity. This zero-velocity assumption applied 
to the fitting of model parameters improved online performance with-
out changing the control algorithm (Supplementary Modeling and 
Supplementary Fig. 5). These estimated intentions and corresponding 
neural data were used to fit the ReFIT-KF control algorithm. Note that 
we applied the intention estimation only to training data: during online 
control the neural prosthesis has no knowledge of the task goal or place-
ment of targets (unlike, for example, in refs. 5,23,24).

The aforementioned training protocol used arm-controlled reaches 
as training data. In a paralyzed individual, it is not possible to record 
arm kinematics for this step. Instead, this training step could rely on the 
individual imagining a set of instructed movements. To test this possible 
strategy, we trained the initial algorithm based on visual-cue observa-
tion8,12, removing the requirement for arm control in step one. During 
these trials the monkey watched a computer-controlled training cursor 
that automatically moved to targets. The initial model was fit using auto-
mated training cursor trajectories and simultaneously recorded neural 
activity, without using measured arm movement (Online Methods). 
Table 1 summarizes ReFIT-KF performance for three experimental 
sessions from each monkey in which stage 1 of ReFIT-KF model train-
ing was based on observation data instead of arm movements. The 
performance, as measured by Fitts’s law25 (Supplementary Modeling), 
for these sessions was similar to that attained for the native arm con-
trol–initiated sessions described (Figs. 1 and 2).

Second innovation
The second design innovation builds on the observation that neural 
activity is correlated with both the velocity and the position of the 
cursor. Most existing neural prostheses model a relationship between 
neural activity and either velocity2,4 or position1,10. A clinical trial 
in humans has shown that neural prostheses modeling velocity have 
better performance than those modeling position11,12. However, 
if the control algorithm models only the velocity relationship, then 
position-based changes in firing will confound decoded velocities 
(Supplementary Modeling). To mitigate this effect, we explicitly mod-
eled velocity as the user’s intention and cursor position as an additional 
variable that affects neural output. This modification allows the user 
to control velocity with measured neural signals while accounting for 
the influence of cursor position. We explicitly assumed that the current 
cursor position, determined by integrating the previous velocity out-
put, is encoded in the neural activity along with the monkey’s current 
intended velocity output. Thus, the expected contribution of position 
to neural activity is removed, enabling more accurate estimation of 
intended velocity (Fig. 1 and Supplementary Modeling).

DISCUSSION
Other studies have noted the potential change in plant-and-control 
strategy and have addressed it by iteratively refining parameters dur-
ing experiments with neural prosthetics2,4,6,9,12,20,21. This approach 
recognizes that control strategies, and therefore model parameters, are 
best measured and understood during closed-loop neural prosthetic 
experiments. However, randomizing initial parameters2,4,21 may cre-
ate a control algorithm that never attains the best possible perform-
ance, just as optimization problems can easily become trapped in 
local optima (Supplementary Modeling). Although, if the recorded 
neural population and the neural control mapping are held constant, 
the consequences of the plant mismatch can be overcome through 
learning. Such learning has been demonstrated with neural control 
mappings built to reconstruct arm kinematics, as well as with a neural 
control mapping in which neuron identities have been shuffled, so the 
decoder output was no longer predictive of native arm kinematics7.

The focus of our study was to obtain high control performance in a 
single session by improving the neural control algorithm and optimizing  
its parameters. Although the neural prosthesis constitutes a new plant 
with different properties than the native arm, the motor cortices are 
involved in native arm control (for example, ref. 26). Therefore, we 
hypothesized that initializing a model with the relationship between neu-
ral activity and natural arm movement would allow the second stage of 
our training method to achieve greater optimization. Previous studies4,21 
have relied on manipulating the control task to refine the neural decoder, 
such as by providing assisted control. In those studies, an automated 
correct answer had been mixed with the output of the neural prosthesis. 
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Figure 4 Performance comparison of native arm versus ReFIT-KF for the 
obstacle-avoidance task. (a,b) In this task the monkey had to move the cursor 
from the initial target (labeled 0) to the final target (labeled 1; demand 
box shown as dotted line) without hitting the magenta-colored barrier. One 
representative cursor trace is shown from each of the four principal observed 
movement types: curve under, curve over, straight (no barrier) and collision 
into barrier. These data are from experiment J-2010-03-09. Native arm 
control (a) is shown in blue and ReFIT-KF control in red (b).

Figure 5 Illustrations of the online neural  
control paradigm and the ReFIT-KF training  
methodology. (a) The input to the control  
algorithm at time i is a vector of spike counts,  
yt, from implanted electrodes. yt is translated  
into a velocity output, vt to drive the cursor.  
(b) ReFIT-KF is trained in two stages. Initially,  
cursor kinematics and neural activity are  
collected during arm control or during an  
observation phase in which cursor movement is  
automated. These arm movement kinematics or observed  
cursor kinematics are regressed against neural activity to generate an initial control algorithm.  
Then, a new set of cursor kinematics and neural activity are collected using the initial algorithm in a closed loop.  
The kinematics collected during neural control (red vectors) are used to estimate intention by rotating the velocities toward the goal (blue vectors).  
This estimate of intended kinematics is regressed against neural activity to generate and run ReFIT-KF.
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1)Hypothesis : BMI learning = optimizing
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2)Can explain behavioral and neural

observations of fast-timescale BMI
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3)Such a mechanism could also underlie
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the need to re-structure the local M1 circuit
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