Learning low-dimensional inputs for brain-machine interface control

Jorge A. Menéndez^{1,2} & Peter E. Latham¹ ¹Gatsby Computational Neuroscience Unit, ²CoMPLEX; University College London

Observation:

learning to control certain BMI decoders...

- \Box is fast Jarosiewicz et al '08; Sadtler et al. '14
- conserves population activity structure Hwang et al. '13; Golub et al. '18, Hennig et al. '18
- maintains memory of past tasks Jarosiewicz et al. '08; Ganguly et al. '11; Sadtler et al. '14

Hypothesis #1: synaptic plasticity

- \times slow... Werfel et al. '03; Miconi et al. '17
- \times changes activity modes Mastrogiuseppe & Ostojic '18
- \times catastrophic forgetting no known local learning rules to avoid this

In other words, for a given network and decoder ${f D}$, solve:

optimal
re-aiming
$$\tilde{\mathbf{v}} = \arg\min_{\mathbf{v}} \left[\frac{\mathbf{D}\phi \left(\mathbf{x}(t; \mathbf{v}, \mathbf{x}_0) \right) - \mathbf{v}^*}{E_t(\mathbf{v}, \mathbf{v}^*)} \right]_{E_t(\mathbf{v}, \mathbf{v}^*)}$$

For linear dynamics $\phi(\mathbf{x}) = \mathbf{x}$ and encoding $f(\mathbf{v}) = \mathbf{M}\mathbf{v}$,

$$\begin{split} \mathbf{x}(t;\mathbf{v},\mathbf{x}_{0}) &= e^{(\mathbf{W}^{rec}-\mathbf{I})\frac{t}{\tau}}\mathbf{x}_{0} + \mathbf{F}(t)\mathbf{v} \\ \Rightarrow \tilde{\mathbf{v}} &= \mathbf{G}\left(\mathbf{v}^{*} - \mathbf{D}e^{(\mathbf{W}^{rec}-\mathbf{I})\frac{t}{\tau}}\mathbf{x}_{0}\right) \\ \delta \mathbf{v}^{*} \end{split}$$
 intrinsic manifold: network activity $\mathbf{x}(t)$ is restricted to live on the plane defined by the columns $\{\mathbf{f}_{i}\}_{i=1}^{2}$ of $\mathbf{F}(t) = \left(e^{(\mathbf{W}^{rec}-\mathbf{I})\frac{t}{\tau}} - \mathbf{I}\right)(\mathbf{W}^{rec}-\mathbf{I})^{-1}\mathbf{W}^{in}\mathbf{M}$

where $\mathbf{G} = (\mathbf{\Lambda}^T \mathbf{\Lambda} + \boldsymbol{\gamma} \mathbf{M}^T \mathbf{M})^{-1} \mathbf{\Lambda}^T$ depends on the 2×2 alignment matrix $\mathbf{\Lambda}$:

$$\mathbf{\Lambda} = \mathbf{D}\mathbf{F}(t) \Rightarrow \mathbf{\Lambda}_{ij} = \mathbf{d}_i^T \mathbf{f}_j \begin{cases} \mathcal{O}(1) & \mathbf{i} \\ \mathcal{O}(\sqrt{n}) & \mathbf{i} \end{cases}$$

In fact, for δv^* uniformly distributed on a circle of radius r, the average optimal error depends directly on Λ through its singular values s_i :

$$E^{\mathsf{opt}} \equiv \langle E_t(\tilde{\mathbf{v}}, \mathbf{v}^*) \rangle_{\delta \mathbf{v}^*} = \frac{r^2}{2} \sum_{i=1}^2 \frac{1}{(s_i^2/\gamma + 1)^2} \left\{ \frac{1}{(s_i^2/\gamma + 1)^2} \right\}$$

 $\| \mathbf{j}^2 + \mathbf{\gamma} \langle u_i^2 \rangle$

upstream metabolic cost

if $\mathbf{d}_i, \mathbf{f}_i$ random

if aligned

$$= 0 \quad \text{if } \gamma = 0$$

$$\rightarrow r^2 \quad \text{as } s_i^2 \rightarrow 0$$

$$\rightarrow 0 \quad \text{as } s_i^2 \rightarrow \infty$$

manifold are misaligned!

ratio

Extension to **non-linear** and **structured** networks: what is $\mathbf{F}(t)$?