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Observation:
learning to control certain BMI decoders...

� is fast
Jarosiewicz et al ’08; Sadtler et al. ’14

� conserves population activity structure
Hwang et al. ’13; Golub et al. ’18, Hennig et al. ’18

� maintains memory of past tasks
Jarosiewicz et al. ’08; Ganguly et al. ’11; Sadtler et al. ’14

Hypothesis #1:

synaptic plasticity

× slow...
Werfel et al. ’03; Miconi et al. ’17

× changes activity modes
Mastrogiuseppe & Ostojic ’18

× catastrophic forgetting
no known local learning rules to avoid this

Hypothesis #2:

re-aiming

X low-dimensional
gradient-free methods will work

X network structure intact
input lives on a fixed 2D manifold

? can be memorized?
low-d variables ⇒ low-d attractors?

Model
u ∈ Rm x ∈ Rn vBMI ∈ R2
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φ (x) + Winu
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Analyze simplified control problem:

find the re-aiming direction
that will drive the network to
achieve a target readout at

some time t

In other words, for a given network and decoder D, solve:

ṽ = arg min
v
‖Dφ (x(t; v,x0))− v∗‖2︸ ︷︷ ︸

Et(v,v
∗)

reaching error

+ γ 〈u2
i 〉︸︷︷︸

C(v)
upstream metabolic cost

optimal
re-aiming
direction

For linear dynamics φ(x) = x and encoding f (v) = Mv,

x(t; v,x0) = e(Wrec−I) t
τx0 + F(t)v

⇒ ṽ = G (v∗ −De(Wrec−I) t
τx0)︸ ︷︷ ︸

δv∗

intrinsic manifold: network activity x(t) is restricted

to live on the plane defined by the columns {fi}2
i=1 of

F(t) =
(

e(Wrec−I) t
τ − I

)
(Wrec − I)−1WinM

where G = (ΛTΛ + γMTM)
−1

ΛT depends on the 2× 2 alignment matrix Λ:

Λ = DF(t)⇒ Λi j = dT
i f j

{
O(1) if di, f j random

O(
√

n) if aligned

In fact, for δv∗ uniformly distributed on a circle of radius r, the average optimal error depends
directly on Λ through its singular values si:

Eopt ≡ 〈Et(ṽ,v
∗)〉δv∗ =

r2

2

2∑
i=1

1

(si
2/γ + 1)2


= 0 if γ = 0

→ r2 as si
2→ 0

→ 0 as si
2→∞

“Neural constraints on learning”
Is re-aiming always a viable strategy?

NO: for γ > 0, if si’s are too small, then error will be large on average

This will happen whenever Λi j are small, i.e. when the decoder and intrinsic
manifold are misaligned!

Consider decoders from Sadtler et al. ’14:
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Alternative strategy (re-scaling + re-aiming): reduce speed of target ve-
locity v∗→ kv̂∗ so that C(ṽ) ≤ Cmax. Is this possible for any v̂∗?

NO: given x0, C(ṽ) > Cmin(x0), so this is only possible if Cmin(x0) < Cmax!
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[Ganguly et al. ’11; Hwang et al. ’13]

“Learning by neural reassociation”
[Golub et al. ’18; Hennig et al. ’18]

intuitive
decoder

inside-
manifold

potent-spacenull-space potent-spacenull-space

S

{xt} {xt}

D S
{xt}
{xt}

variance of {xt} in D

va
ri

an
ce

of
{x

t}
in

D

variance of {xt} in S

va
ri

an
ce

of
{x

t}
in

S

“repertoire change” log variance ratio

Summary & Future Directions
A re-aiming + re-scaling strategy can account for several

observations of fast-timsecal learning of BMI control

This strategy requires learning low-dimensional parametric inputs
⇒how are these learnt?

How might this process interact with slow-timescale learning?

Extension to non-linear and structured networks: what is F(t)?
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