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Neural networks in the brain must be capable of not only producing time-varying signals but
also learning how to produce them. A typical approach to this problem is to build a chaotic
recurrent neural network (RNN) and learn a set of readout weights wj so that a linear readout of
the neurons’ firing rates

∑
j wjrj(t) produces the desired signal f(t) (Sussillo & Abbott, 2009).

By feeding back this readout to all the neurons, the RNN will stabilize - so long as the readout
stays close to f(t). This can be easily achieved using powerful but non-local learning rules
such as recursive-least-squares (RLS).

Fig 1: number of periods of f(t) un-
til readout error (mean squared er-
ror normalized by variance of f(t)) ex-
ceeds 20%, using readout weights at
different points throughout training.
Error bars designate S.E.M.

Local learning rules, however, struggle to solve this
problem due to the instabilities inherent to the chaotic
dynamics of the RNN. Even a slight deviation from the
optimal set of weights can prevent the network from
stabilizing, thus producing a readout that diverges
from its target within even one or two periods of f(t).
Indeed, a standard delta-rule will produce readouts
that can maintain low error for only 10 periods or less
after 1000 trials of training (fig 1). One reason for this
is that the learning rate must be very low for the delta-
rule to maintain stability throughout training, meaning
that the readout weights will take a long time to align
with their optimum. This contrasts with RLS, which typ-
ically makes large updates early in training and then
slows down. This suggests the learning rate should
adapt over time, so it can start big and then get small.

But how quickly should the learning rate decrease? A
principled approach to this question arises from con-

sidering the fact that any weight update should take into account the uncertainty in the true
value of the weight (Aitchison, Pouget & Latham, 2017). Framing the learning problem as
Bayesian inference, under certain assumptions we derive the following ’dynamic’ delta-rule
with a history-dependent decaying learning rate:
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We find that these learning rate dynamics help attenuate the instabilities described above, by
allowing the network to start with a large learning rate that quickly brings the readout weights
closer to the optimal ones. This results in a stable solution within 1000 trials (fig 1), meaning
that fixing the weights and running the network at this point will result in a readout with <20%
error for over 30 periods of f(t).


